基于数值模拟的强降雨诱发低频泥石流特征分析和危险性评价
作者单位:

1.长安大学;2.青海省地质环境监测总站

基金项目:

国家自然科学基金;科技部重点基础研究计划项目


Characteristic analysis and risk assessment of low-frequency debris flow induced by heavy rainfall based on numerical simulation
Fund Project:

National Natural Science Foundation of China; Key Basic Research Program of the Ministry of Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    [目的]短时间的极强降雨在山区诱发极低频泥石流,对山区人居安全和生态环境带来严重威胁。本文以2023年“8.11”鸡窝子山洪泥石流为研究对象,对该山洪泥石流的特征和成因进行分析,并进行危险性评价。[方法]通过野外调查、数值模拟等手段,采用实际降水频率,开展了2023年“8.11”鸡窝子山洪泥石流形成过程反演。[结果](1)强降雨快速汇集形成洪流,导致上游沟道松散物质被揭底侵蚀,形成“消防水管”效应,暴发山洪泥石流,并借助陡峭地形对全流域沟道进行侵蚀,大量堆积物和巨大冲击力在下游扩散开来形成堆积扇,并堵塞河道。(2)在实际降雨频率下模拟得出,泥石流全流域淤积深度在0.04~5.63 m之间,最大流速7.43 m/s,堆积扇面积1.91×104 m2,一次性冲出量为78271 m3。(3)基于流速、泥深和危害范围,给出了高、中、低三个危险区域,堆积扇西侧区域地势较高为低危险区,占堆积扇面积约10%,中间区域和堆积边缘至公路区域为中危险区,该类面积占62%,堆积扇东南和西南区域为高危险区,该类面积占28%。[结论]2023年“8.11”鸡窝子山洪泥石流是一次典型由极端短时强降雨诱发的低频山洪泥石流灾害,研究揭示了低频泥石流的触发机制和运动特征,FLO-2D模型有效模拟了泥石流的运动和沉积过程,并确定了泥石流的危险范围。研究成果可为秦岭山区类似低频泥石流的防灾减灾提供参考。

    Abstract:

    [Objective] Extremely heavy rainfall in a short time can induce extremely low frequency debris flow in mountain area, which brings serious threat to human security and ecological environment in mountain area. In this paper, the characteristics and causes of the 2023“8.11” Jiwozi flash flood and debris flow are analyzed, and its risk is evaluated. [Methods] The formation process of the “8.11” 2023 Jiwozi flash flood and debris flow was retrieved by means of field investigation, numerical simulation and actual precipitation frequency. [Results] The results are as follows: (1) The rapid confluence of extremely short duration and strong rainfall resulted in a flood, which resulted in the erosion of loose materials in the gully, formed the effect of “Fire hose”, and caused a small-scale collapse of the mountain, flash flood debris flow is formed in the gully, and the gully is eroded by the help of steep terrain. (2) Under the actual rainfall frequency, the final depth of debris flow is between 0.04 m and 5.63 m, the maximum velocity is 7.43 m/s, and the one-time discharge is 78271 m3. (3) Based on the velocity of flow, depth of mud and hazard range, three high, middle and low risk areas are given, and the high terrain area on the west side of the accumulation fan is the low risk area, which accounts for about 10% of the accumulation fan area, the middle area and the area from the edge of the pile to the road are medium-risk areas, accounting for 62% of the area, while the areas of the south-east and south-west of the pile fan are high-risk areas, accounting for 28% of the area. The research results can provide scientific reference for the risk control of extremely low frequency flash floods and debris flows in the mountainous areas of Qinling Mountains. [Conclusion] The 2023“8.11” Jiwozi flash flood and debris flow is a typical low-frequency flash flood and debris flow disaster induced by extremely short-term heavy rainfall, and the FLO-2D model effectively simulates the movement and sedimentation process of the debris flow, and determines the danger range of the debris flow. The research results can provide a reference for disaster prevention and mitigation of similar low-frequency debris flows in Qinling Mountains.

    参考文献
    [1] 向兵,谢万银,苏玉杰,等.川西公路低频泥石流发育特征与防治综述[J].山西建筑,2023,49(17):1-8. [XING Bing, XIE Wan Yin, SU Yujie, etc. Development and control of low-frequency debris flow along Kawanishi Highway [J]. Shanxi architecture, 2023,49(17):1-8.]
    [2] 钟政,胡桂胜,杨溢,等.九龙县踏卡河流域乌拉溪沟低频泥石流特征与危险性[J].成都理工大学学报(自然科学版),2021,48(01):111-120. [ZHONG Zheng, HU Guisheng, YANG Yi, etc. Characteristics and risk of low-frequency debris flow in Wulaxi Gully, Taaka River basin, Jiulong County [J]. Journal of Chengdu University of Technology Science, 2021,48(01):111-120.]
    [3] 严炎,葛永刚,张建强,等.四川省汶川县簇头沟“7.10”泥石流灾害成因与特征分析[J].灾害学,2014,29(03):229-234. [YAN Yan, GE Yonggang, ZHANG Jianqiang, etc. Analysis on the cause and characteristics of “7.10” debris flow disaster in Hutou Gully, Wenchuan County, Sichuan Province [J]. Disaster Science, 2014,29(03): 229-234.]
    [4] 史继帅,姜亮,翟胜强.四川甘洛县黑西洛沟“8·31”泥石流动力过程 [J].中国地质灾害与防治学报,2024,35(03):52-60. [SHI Jishuai, JIANG Liang, ZHAI Shengqiang. The dynamic process of “8.31” debris flow in Heishiluo Gully, Ganluo County, Sichuan Province [J]. Chinese Journal of geological hazards and prevention, 2024,35(03): 52-60.]
    [5] LIU Mei, Deng Mingfeng, Chen Ningsheng, et al.Analysis of the Low-Frequency Debris Flow Disaster Induced by a Local Rainstorm on 12 July 2022, in Pingwu County, China[J].Remote Sensing,2024,16(9).
    [6] 曲瑞,李仲先,何政伟,等.甘肃天水大沟短时强降水诱发低频泥石流特征及成因[J].山地学报,2018,36(03):488-495. [QU Rui, LI Zhongxian, HE zhengwei, etc. Characteristics and genesis of low-frequency debris flow induced by short-term heavy precipitation in Dagou, Tianshui, Gansu [J]. Journal of Mountain Science, 2018,36(03): 488-495.]
    [7] HU Guisheng, Hua Hong, Tian Shufeng, et al.Method on Early Identification of Low-Frequency Debris Flow Gullies along the Highways in the Chuanxi Plateau[J].Remote Sensing,2023,15(5):1183-1183.
    [8] ZHAO Yan, Meng Xingmi, Qi Tianjun, et al.AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China[J].Geomorphology,2020,359(prepublish):107125-107125.
    [9] 常鸣,窦向阳,唐川,等.降雨驱动泥石流危险性评价[J].地球科学,2019,44(08):2794-2802. [CHANG Ming, DOU Xiangyang, TANG Chan, etc. Risk assessment of rainfall-driven debris flow [J]. Earth sciences, 2019,44(08): 2794-2802.]
    [10] 袁磊,马涛,韩双宝,等.秦岭北麓地下水水文地球化学演化规律及模式[J].长江科学院院报,2024,41(04):62-69. [YUAN Lei, MA Tao, HAN Shuangbao, etc. Evolution Law and model of groundwater geochemistry in northern Piedmont of Qin Mountains [J]. Journal of the Changjiang Academy of Sciences, 2024,41(04): 62-69.]
    [11] 张成芳.秦岭北麓户县甘岔沟泥石流风险评价[D].长安大学,2018. [ZHANG Chengfang. Risk assessment of debris flow in Gancha Gully, Huxian County, North Luhu County, Qin Mountains [ d ]. Chang''an University, 2018.]
    [12] 刘兴昌.秦岭水文特征及其对泥石流影响的初步分析[J].西北大学学报(自然科学版),1997,(05):72-77. [LIU Xingchang. Hydrological characteristics of Qin Mountains and their impact on debris flow [J]. Journal of Northwestern University (Natural Science Edition) , 1997, (05): 72-77.]
    [13] 王峻鑫,赵家绪.西宁市郭家沟大崖沟泥石流成因与防治[J].青海环境,2003,(03):123-125. [WANG Junxin, ZHAO Jiaxiu. Formation and control of debris flow in Dayagou, Guojiagou, Xining [J]. Qinghai environment, 2003, (03): 123-125.]
    [14] 刘关雄,张杰,杨志全,等.雷布大箐“9·17”泥石流灾害发育特征及运动过程模拟分析[J].水力发电,2023,49(09):29-34. [LIU Guanxiong, ZHANG Jie, YANG Zhiquan, etc. The simulation analysis of the development characteristics and movement process of the debris flow disaster of“9 · 17” in Leibudaqing [J]. Hydropower, 2023,49(09): 29-34.]
    [15] 黄河.基于HEC-RAS的山洪危险性评价[J].山西建筑,2024,50(07):185-187+194. [HUANG He Mountain flood risk assessment based on HEC-Ras [J]. Shanxi architecture, 2024,50(07): 185-187+194.]
    [16] 屈永平,肖进.急陡沟道泥石流的消防管效应形成机制研究[J].水力发电,2020,46(08):38-42+47. [QU Yongping, XIAO Jin. Study on the formation mechanism of fire hose effect of debris flow in steep gully [J]. Hydropower, 2020,46(08): 38-42+47.]
    [17] 王裕宜.泥石流体的流变特性与运移特征 [J]. 山地学报,2015,33(04):472. [WANG Yuyi. The rheological and migration characteristics of debris flow is published [J]. Journal of Mountain Sciences, 2015,33(04): 472.]
    [18] 向兵,谢万银,苏玉杰,等.川西公路低频泥石流发育特征与防治综述[J].山西建筑,2023,49(17):1-8. [XIANG Bing, XIE Wan Yin, SU Yujie, etc. Development and control of low-frequency debris flow along Kawanishi Highway [J]. Shanxi architecture, 2023,49(17): 1-8.]
    [19] 庄建琦,崔鹏,郭晓军. 基于水文模型泥石流汇流预测——以蒋家沟一级支沟大凹子沟泥石流为例[J].灾害学,2013,28(02): 55-59. [ZHUANG Jianqi, CUI Peng, GUO Xiaojun. Prediction of debris flow confluence based on hydrological model —— taking Daaozi Gully of Jiangjia Gully as an example [J]. Disaster Science, 28(02): 55-59.]
    [20] 曹鹏,侯圣山,陈亮,等.基于数值模拟的群发性泥石流危险性评价——以甘肃岷县麻路河流域为例 [J].中国地质灾害与防治学报, 2021, 32 (02):100-109. [Cao Peng, Hou Shengshan, Chen Liang, etc. Risk assessment of massive debris flow based on numerical simulation —— taking Meluhe River basin in Min County of Gansu province as an example [J]. Chinese Journal of geological hazards and Prevention, 2021,32(02): 100-109.]
    [21] 杨涛,唐川,方群生,等.基于FLO?2D的溃决型泥石流模拟研究[J].泥沙研究,2017,42(04):60-66. [YANG Tao, TANG Chan, FANG Qunsheng, etc. FLO-2d-based simulation of outburst debris flow [J]. Study on sediment, 2017,42(04): 60-66.5.]
    [22] 张宪政,铁永波,宁志杰,等.四川汶川县板子沟“6·26”特大型泥石流成因特征与活动性研究[J].水文地质工程地质,2023,50(05):134-145. [ZHANG Xianzheng, TIE Yongbo, NING Zhijie, etc. Study on the genesis and activity of“6 26” super-large debris flow in banzigou, Wenchuan County, Sichuan Province [J]. Hydrogeology and engineering geology, 2023,50(05): 134-145.]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:30
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-26
  • 最后修改日期:2024-11-01
  • 录用日期:2024-11-01