基于RF和EBKRP算法的新安江流域有效土壤厚度反演
DOI:
作者:
作者单位:

1.南京地质调查中心;2.华南师范大学

作者简介:

通讯作者:

中图分类号:

S159

基金项目:

中国地质调查局“华东地区自然资源动态监测与风险评估(编号:DD20230103)”、“华东地区国土空间用途管制技术支撑与应用服务(编号:DD20230495)”和“黑土地土壤退化诊断评价与动态监测技术合作研发(编号:BZ2023003)”项目资助。


Effective Soil Thickness Inversion in Xin'an River Basin Based on RF and EBKRP Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 快速、准确地获取区域有效土壤厚度,分析其空间分布特征和影响因素,对植被生长、土壤保持和粮食安全具有重要意义。[方法] 以新安江流域为研究区,将野外调查数据、地形、岩性和气候等成土因素结合起来,采用经验贝叶斯克里金回归预测(EBKRP)和随机森林(RF)算法,得到有效土壤厚度反演结果,并分析其与环境变量之间的关系。[结果] ①区域平均有效土壤厚度为0.2-0.3米,城镇建设集中和人类活动密集的盆地和平原区土壤厚度较高,丘陵山地区则较低。②从MAE(平均绝对误差)、R2(判定系数)和RMSE(均方根误差)三项精度评价指标来看,RF算法的预测结果明显优于EBKRP算法,而且更能显示出土壤厚度空间异质性分布特征,在一定程度上提高了土壤厚度数字制图的效果。③有效土壤厚度的估算受地形和气候变量的影响较大,它们分别占变量重要性的46.77%和18.78%。[结论] RF算法能够有效实现对区域有效土壤厚度的反演,克服了土壤厚度空间异质性的特点,相较于有限采样的模型更精确,分辨率也更高。

    Abstract:

    [Objective] To quickly and accurately obtain the effective soil thickness in a region, evaluate its spatial distribution characteristics and identify the influencing factors, which is of considerable importance for vegetation growth, soil conservation and food security. [Methods] Taking the Xin'an River Basin as the research area, combining field survey data, topography, lithology, and climate and other soil-forming factors, the Empirical Bayesian Kriging Regression Prediction (EBKRP) and Random Forest (RF) algorithms were used to obtain the effective soil thickness inversion results. The relationship between this data and environmental variables was also analysed. [Results] ①The average effective soil thickness in the region is 0.2-0.3 m, with higher soil thickness in basins and plains where urban construction is concentrated and human activities are intensive, and lower soil thickness in hilly and mountainous areas. ②From the three accuracy evaluation indicators of MAE (Mean Absolute Error), R2 (Coefficient of Determination) and RMSE (Root Mean Square Error), the prediction results of RF algorithm are significantly better than those of EBKRP algorithm, and it can better display the spatial heterogeneity distribution characteristics of soil thickness, improving the effect of soil thickness digital mapping to a certain extent. The effective soil thickness estimation is greatly influenced by topography and climate variables, which account for 46.77% and 18.78% of the variable importance, respectively. [Conclusion] The RF algorithm is an effective method for inverting regional effective soil thickness, overcoming the characteristics of spatial heterogeneity of soil thickness. Furthermore, it is more accurate and has higher resolution compared to models with limited sampling.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-12
  • 最后修改日期:2024-11-20
  • 录用日期:2024-11-21
  • 在线发布日期:
  • 出版日期: