毛乌素沙地大型光伏电站对近地表微气象的影响 —以靖边伊当湾光伏电站为例
作者:
作者单位:

1.西北大学城市与环境学院;2.中国科学院西北生态环境资源研究院研究院

基金项目:

华能集团总部科技项目(HNKJ21-H76)


Impact of Large-Scale Photovoltaic Power Stations of the Mu Us Desert on the Near-Surface Microclimate : A Case Study of the Jingbian Yidangwan Solar Power Station
Affiliation:

1.College of Urban and Environmental Science,Northwestern University,Xi '2.'3.an

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • | | | |
  • 文章评论
    摘要:

    [目的]揭示光伏电站内外近地表微气象特征的差异,评估毛乌素沙地大型光伏电站布设对近地表微气象的影响。[方法]利用自动气象站的观测数据,通过对比对照点和站内各观测点得到微气象要素(风速、风向、气温、相对湿度、辐射)评估毛乌素沙地大型光伏电站的布设对近地表微气象的影响。[结果]相比对照区域,两种光伏阵列在2m高度处的风向均发生显著变化,呈现出更为单一的特征。同时,光伏阵列区域的气温有所降低,固定可调光伏板间和板下的最大降温分别为0.92 ℃和0.97 ℃,而平单轴光伏板间和板下的最大降温分别为2.24 ℃和2.46 ℃。此外,空气相对湿度有所增加,固定可调光伏区域的最大增幅出现在12月份,板间和板下分别增加了2.12 %和1.32 %;平单轴光伏区域在3月份增幅最大,板间和板下分别增加了4.74 %和5.48 %。光伏阵列对辐射的影响主要体现在光伏板下区域,其中固定可调光伏板下和平单轴光伏板下的太阳辐射量最大分别减少了91.30 %和88.27 %,光合有效辐射量最大分别减少了91.06 %和82.29 %。[结论]大型光伏电站具有改变风向、降低气温、增加相对湿度以及减少地表太阳辐射量和光合有效辐射量的作用。其中,平单轴光伏阵列在“降温增湿”方面的效果优于固定可调光伏阵列。

    Abstract:

    [Objective] The objective of this study is to elucidate the differences in near-surface microclimate characteristics between the interior and exterior of photovoltaic power stations and to evaluate the effects of the layout of large-scale photovoltaic power stations in the Mu Us Desert on the near-surface microclimate. [Methods] The research employed observational data from automatic weather stations to assess the impact of the photovoltaic power station layout in the Mu Us Desert on near-surface microclimate by comparing microclimate elements (wind speed, wind direction, air temperature, relative humidity, and radiation) between control points and various observation points within the station. [Results]?The study revealed that, compared to the control area, both types of photovoltaic arrays exhibited significant changes in wind direction at a height of 2 meters, presenting a more monotonous pattern. Additionally, the temperature within the photovoltaic array areas was reduced.Specifically, the maximum temperature decreases recorded between and beneath the fixed adjustable photovoltaic panels were 0.92 °C and 0.97 °C, respectively. In comparison, the horizontal single-axis photovoltaic panels showed maximum temperature reductions of 2.24 °C and 2.46 °C between and beneath the panels, respectively.Furthermore, there was an increase in air relative humidity, with the greatest increments occurring in the fixed adjustable photovoltaic area in December, where the inter-panel and under-panel areas increased by 2.12% and 1.32%, respectively. The horizontal single-axis photovoltaic area experienced the largest increase in March, with inter-panel and under-panel areas increasing by 4.74% and 5.48%, respectively. The impact of the photovoltaic arrays on radiation was predominantly observed beneath the panels, with the maximum reductions in solar radiation beneath the fixed adjustable and horizontal single-axis photovoltaic panels being 91.30% and 88.27%, respectively, and the maximum reductions in photosynthetically active radiation being 91.06% and 82.29%, respectively.[Conclusion] The deployment of large-scale photovoltaic power stations can alter wind direction, reduce air temperature, increase relative humidity, and decrease surface solar radiation and photosynthetically active radiation. Notably, the horizontal single-axis photovoltaic array outperforms the fixed adjustable photovoltaic array in terms of its capacity to lower temperature and increase humidity.

    参考文献
    [1] Stoppato A. Life cycle assessment of photovoltaic electricity generation[J]. Energy, 2008, 33(2): 224-232.
    [2] IEA. World Energy Outlook [R]. Paris, 2002.
    [3] Ito M, Kato K, Sugihara H, et al. A preliminary study on potential for very large-scale photovoltaic power generation (VLS-PV) system in the Gobi desert from economic and environmental viewpoints[J]. Solar Energy Materials and Solar Cells, 2003, 75(3-4): 507-517.
    [4] Kaldellis J K, Kapsali M, Kavadias K A. Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece[J]. Renewable energy, 2014, 66: 612-624.
    [5] Slocum A H, Codd D S, Buongiorno J, et al. Concentrated solar power on demand[J]. Solar Energy, 2011, 85(7): 1519-1529.
    [6] IEA. Statistical Review of World Energy [R]. Paris, 2023.
    [7] Szilágyi A, Gróf G. Estimating the environmental footprint of a grid-connected 20 MWp photovoltaic system[J]. Solar Energy, 2020, 197: 491-497.
    [8] Turney D, Fthenakis V. Environmental impacts from the installation and operation of large-scale solar power plants[J]. Renewable and Sustainable Energy Reviews, 2011, 15(6): 3261-3270.
    [9] Fthenakis V, Yu Y. Analysis of the potential for a heat island effect in large solar farms[C]//2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013: 3362-3366.
    [10] Ravikumar D, Sinha P. The impact of photovoltaic (PV) installations on downwind particulate matter concentrations: results from field observations at a 550-MWAC utility-scale PV plant[J]. Journal of the Air Waste Management Association, 2017, 67(10): 1126-1136.
    [11] 杨丽薇, 高晓清, 吕芳, 等. 光伏电站对格尔木荒漠地区太阳辐射场的影响研究[J]. 太阳能学报, 2015, 36(9): 2160-2166.
    [12] 殷代英, 马鹿, 屈建军, 等. 大型光伏电站对共和盆地荒漠区微气候的影响[J]. 水土保持通报, 2017, 37(3): 15-21.
    [13] 杨世荣. 库布齐沙漠光伏电站风沙运动及蚀积特征研究[D]. 内蒙古农业大学, 2019.
    [14] 赵鹏宇, 高永, 陈曦, 等. 沙漠光伏电站对空气温湿度影响研究[J]. 西部资源, 2016 (3): 125-128.
    [15] 王涛. 光伏电站建设对靖边县土壤, 植被的影响研究[D]. 西北农林科技大学, 2015.
    [16] 王祯仪, 汪季, 高永, 等. 光伏电站建设对沙区生态环境的影响[J]. 水土保持通报, 2019 (1): 191-196.
    [17] 杜慧, 孙芳. 初步研究光伏电站运营期对植被的影响[J]. 环境与发展, 2017, 29(8): 30-31.
    [18] 王琪.毛乌素沙地:绿色“接力”改天换地[N].中国民族报,2022-06-17(004).
    [19] 孙刚,刘慧,李丽等.光合有效辐射及其传感器研究进展[J].农业工程学报,2023,39(08):20-31.
    [20] 聂修和,聂宜茂,聂俊华,等.光合有效辐射测量原理及其单位换算[J].山东农业大学学报,1992,(03):247-253+258.
    [21] 任小丽,何洪林,张黎,等.1981-2010年中国散射光合有效辐射的估算及时空特征分析[J].地理学报,2014,69(03):323-333.
    [22] 蒋俊霞,高晓清.光伏系统气候效应及影响机理研究进展[J].高原气象, 2022, 41(4):10.
    [23] 张克存,奥银焕,屈建军,等.巴丹吉林沙漠湖泊-沙山地貌格局对局地小气候的影响[J].水土保持通报, 2014, 34(5):5.
    [24] Doran J C , Shaw W J , Hubbe J M .Boundary Layer Characteristics over Areas of Inhomogeneous Surface Fluxes[J].Journal of Applied Meteorology, 2010, 34(2):559-571.
    [25] 卢霞.荒漠戈壁区光伏电站建设的环境效应分析[J].兰州大学, 2013.
    [26] Zhang X , Xu M .Assessing the Effects of Photovoltaic Powerplants on Surface Temperature Using Remote Sensing Techniques[J].Remote Sensing, 2020, 12(11):1825.
    [27] 唐远程,卢小龙,孙志云等.光伏支架成本及选型分析[J].太阳能,2023(10):81-87.
    [28] 刘永博.某光伏电站光伏支架选型研究[J].光源与照明,2023(05):122-125.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:18
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-11-29
  • 最后修改日期:2024-12-23
  • 录用日期:2024-12-24