北部湾滨海地区覆被信息提取及时空演变驱动机制研究——以广西钦州市为例
作者单位:

1.南宁师范大学;2.广西交通职业技术学院;3.广西林业科学研究院;4.广西遥感空间信息科技有限公司;5.广西大学

基金项目:

国家自然科学基金(42164001);广西2022年本科教育教学重点项目建设经费(经费号:602030389173301)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    钦州市作为世纪工程“平陆运河”承建主阵地,依托现代遥感技术产出高精度土地利用/覆被变化(LUCC,Land Use/Cover Change)数据集,对其国土空间规划及生态保护建设具有重要意义。本文面向北部湾滨海地区,以钦州市为例,基于谷歌地球引擎(Google Earth Engine,GEE)及Landsat遥感影像,在随机森林模型中融合光谱特征、纹理特征、指数特征以及地形特征,完成2012—2022年LUCC数据集制作及时空格局演变分析,引入最优参数地理探测器实现驱动机制探讨。结果表明:(1)经参数优化的随机森林模型可实现遥感信息有效提取,各期LUCC产品总体精度(OA,Overall Accuracy)均在0.88至0.92之间,Kappa系数介于0.86至0.90之间,结合若干4km×4km解译图斑与Google Earth同期同位高分辨率影像进行整体准确性评价,表明地物的分类结果与实际地物具有较好的一致性。(2)2012—2022年钦州市林地面积增加91.93km2,耕地面积减少284.73km2,建设用地面积提高180.05km2,综合土地利用动态度呈上升趋势。(3)研究期内,钦州市用地演变主要由经济动力(GDP)和地形特征(DEM和坡度)驱动,在2012—2017、2017—2022、2012—2022年三个阶段中,两者对时空格局演变呈现双因子增强作用,生态要素(NPP、降水)与GDP的交互效应在不同阶段呈现不同程度的双因子增强作用。本研究可为钦州市土地资源管理提供数据支撑,所产出的LUCC数据集对指导北部湾滨海区域发展有借鉴价值。

    Abstract:

    The city of Qinzhou, serving as the primary construction site for the century project "Pinglu Yunhe", exploits modern remote sensing technology to generate high-precision land use/cover change (LUCC) datasets, which exert substantial implications for its national spatial planning and ecological protection and construction. This research, concentrating on the Beibu Gulf coastal area and taking Qinzhou as an exemplar, employs Google Earth Engine (GEE) and Landsat remote sensing images to construct a LUCC dataset during the period from 2012 to 2022 and analyze its temporal and spatial pattern evolution by means of a random forest model integrating spectral, texture, index, and terrain features. The study also introduces the optimal parameter geographic detector to explore the driving mechanisms. The results demonstrate that: (1) The optimized random forest model can effectively extract remote sensing information, with overall accuracies (OA) ranging from 0.88 to 0.92 and Kappa coefficients ranging from 0.86 to 0.90. The overall accuracy and Kappa coefficient of each period"s LUCC product are in line with the classification results of several 4km×4km interpretation patches and Google Earth"s high-resolution images of the same period and location, indicating that the classification results of land features are consistent with the actual land features. (2) From 2012 to 2022, the area of forest land in Qinzhou increased by 91.93km2, the area of cultivated land decreased by 284.73km2, and the area of built-up land rose by 180.05km2. The overall trend of land use and cover change is ascending. (3) During the study period, the land use and cover change in Qinzhou was mainly driven by economic factors (GDP) and terrain features (DEM and slope), with the two factors presenting a dual-factor enhancement effect on the temporal and spatial pattern evolution in the three phases of 2012-2017, 2017-2022, and 2012-2022 respectively. The interactive effect between ecological factors (NPP and precipitation) and GDP shows different degrees of dual-factor enhancement at different stages. This study can provide data support for land resource management in Qinzhou and the produced LUCC datasets can serve as a reference for guidance.

    参考文献
    [1] 骆剑承,胡晓东,吴田军,等.高分遥感驱动的精准土地利用与土地覆盖变化信息智能计算模型与方法研究[J].遥感学报,2021,25(07):1351-1373.
    [2] 李清泉,卢艺,胡水波,等.海岸带地理环境遥感监测综述[J].遥感学报,2016,20(05):1216-1229.
    [3] 崔宾阁,吴景,李心慧,等.结合深度学习和植被指数的滨海湿地高分二号遥感影像信息提取[J].遥感学报,2023,27(06):1376-1386.
    [4] 张悦琦,任鸿瑞.融合特征优选与随机森林算法的GF-6影像东北一季稻遥感提取[J].遥感学报,2023,27(09):2153-2164.
    [5] 王李娟,孔钰如,杨小冬,等.基于特征优选随机森林算法的农耕区土地利用分类[J].农业工程学报,2020,36(04):244-250.
    [6] 王小娜,田金炎,李小娟,等.Google Earth Engine云平台对遥感发展的改变[J].遥感学报,2022,26(02):299-309.
    [7] 闵钰魁,柯樱海,韩月,等.融合Sentinel-2和GF-1时序影像的入侵植物互花米草清除动态监测[J].遥感学报,2023,27(06):1467-1479.
    [8] 程丽娜,钟才荣,李晓燕,等.Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类[J].遥感学报,2022,26(02):348-357.
    [9] Yang, J. and Huang, X.: The 30?m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth Syst. Sci. Data, 13, 3907–3925, 2021.
    [10] Zhang, X., Zhao, T., Xu, H., Liu, W., Wang, J., Chen, X., and Liu, L.: GLC_FCS30D: the first global 30?m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method, Earth Syst. Sci. Data, 16, 1353–1381
    [11] 郑慧玲,郑辉峰.基于土地利用/覆被动态变化的粤港澳大湾区碳储量评价与预测[J].环境科学,2024,45(04):2321-2331.DOI:10.13227/j.hjkx.202304158.
    [12] 刘小燕,崔耀平,史志方,等.GEE平台下多源遥感影像对洪灾的监测[J].遥感学报,2023,27(09):2179-2190.
    [13] 段文胜,陈元鹏,王力,等.广西壮族自治区短轮伐期人工林时空分布信息提取[J].遥感学报,2023,27(11):2617-2627.
    [14] 梁锦涛,陈超,孙伟伟,等.长时序Landsat和GEE云平台的杭州湾土地利用/覆被变化时空格局演变[J].遥感学报,2023,27(06):1480-1495.
    [15] 秦贤宏,陈雯,段学军,等.复杂地貌区域生态敏感区综合评价与保护对策——以广西钦州市为例[J].自然资源学报,2013,28(04):608-617.
    [16] 廖超明,云子恒,罗恒,等.基于特征优选的喀斯特地区覆被信息提取及精度分析[J].测绘通报,2024,(02):45-50.DOI:10.13474/j.cnki.11-2246.2024.0208.
    [17] 冯文卿,眭海刚,涂继辉,等.高分辨率遥感影像的随机森林变化检测方法[J].测绘学报,2017,46(11):1880-1890.
    [18] 杨珺,李豪,马青,等.汾河流域土地利用景观格局演变及其驱动因素探究[J/OL].西北农林科技大学学报(自然科学版),2024(06):1-12.
    [19] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(01):116-134.
    [20] 李文秀,燕振刚.基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J].干旱区研究,2024,41(04):590-602.DOI:10.13866/j.azr.2024.04.06.
    [21] 陈雪玲,孙梅玲,吕一河,等.青藏东缘若尔盖高原土地利用时空变化特征及其驱动因素分析[J].生态与农村环境学报,2023,39(03):306-315.DOI:10.19741/j.issn.1673-4831.2022.0578.
    [22] 徐国良,卢凌莹,杨璨,等.基于多时相Sentinel-1A的丘陵山区耕地非粮化特征识别及驱动机制[J].农业工程学报,2023,39(22):236-245.
    [23] 岳胜如,王伦澈,曹茜,等.塔里木河流域植被动态及潜在因素驱动机制[J/OL].地球科学,1-17[2024-05-29].
    [24] 王正雄,蒋勇军,张远嘱,等.基于GIS与地理探测器的岩溶槽谷石漠化空间分布及驱动因素分析[J].地理学报,2019,74(05):1025-1039.
    [25] 傅楷翔,贾国栋,余新晓,等.基于改进遥感生态指数的青藏公路那(曲)安(多)段生态环境评估及驱动机制分析[J].环境科学,2024,45(03):1586-1597.DOI:10.13227/j.hjkx.202303252.
    [26] 梁庆璇,廖超明,滕永核,等.南宁市主城区土地利用景观格局变化及驱动力研究[J].江苏农业科学,2021,49(02):187-193.DOI:10.15889/j.issn.1002-1302.2021.02.033.
    [27] 梁鑫源,李阳兵.三峡库区规模农地时空变化特征及其驱动机制[J].地理学报,2018,73(09):1630-1646.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:17
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-12-06
  • 最后修改日期:2025-02-19
  • 录用日期:2025-02-20