不同地表粗糙度红壤坡面流水动力学特性
作者:
中图分类号:

S157.1

基金项目:

国家自然科学基金项目“不同前期含水量下地表糙度对红壤坡面流水动力特性的影响机制”(42207389); 广西研究生教育创新计划资助项目(YCSW2024063)


Hydrodynamic characteristics of overland flow under different surface roughness of red soil slope
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 探究不同地表粗糙度、坡度和流量下的红壤坡面流水动力学特性,为理解和预测红壤坡面片蚀过程提供科学依据。[方法] 通过5个团聚体粒径(0.25~1,1~3,3~5,5~7,7~10 mm)模拟构建不同地表粗糙度的红壤坡面,试验设计4个流量(2,4,8,16 L/min)和4个坡度(5°,10°,15°,20°),基于运动恢复结构的摄影测量法和电解质示踪法测定坡面地表粗糙度和流速,计算出每个工况下的地表粗糙度和水动力学参数。[结果] 在试验设计条件下,坡面流平均流速介于0.022~0.531 m/s,雷诺数在63~1 155,弗劳德数范围为0.1~4.1,阻力系数区间为0.13~68.86。地表粗糙度与阻力系数呈正相关(p<0.01),与雷诺数(p<0.05)、弗劳德数和流速(p<0.01)的呈负相关。坡度与坡面流平均流速和弗劳德数呈正相关(p<0.01)。单宽流量与雷诺数、弗劳德数和平均流速呈正相关(p<0.01),与阻力系数呈负相关(p<0.01)。[结论] 地表粗糙度增加导致坡面流阻力增大,水流惯性力减小,是决定平均流速、弗劳德数和阻力系数的关键因素。单宽流量通过改变坡面流水深和水流惯性力主导雷诺数的变化。相较于地表粗糙度和单宽流量,坡度对平均流速、雷诺数、弗劳德数和阻力系数的影响最小。平均流速、弗劳德数与地表粗糙度、单宽流量及坡度间呈良好的幂函数关系。雷诺数、阻力系数则与单宽流量和地表粗糙度呈良好的幂函数关系。

    Abstract:

    [Objective] The hydrodynamic properties of red soil slopes under varying surface roughness, slope, and flow rate were analyzed in order to provide scientific basis for a better understanding and prediction of sheet erosion on red soil slopes. [Methods] A study was conducted to simulate red soil slopes with varying surface roughness by using different particle sizes (0.25—1, 1—3, 3—5, 5—7, and 7—10 mm). The experiments involved four flow rates (2, 4, 8, and 16 L/min) and four slopes (5°, 10°, 15°, and 20°). Photogrammetry based on the structure from the motion technique and the electrolyte tracing method were used to determine the surface roughness and flow velocity on the slope. The collected data were used to calculate the surface roughness and hydrodynamic parameters under each condition. [Results] The mean flow velocity varied from 0.022 to 0.531 m/s under the experimental design conditions. The Reynolds numbers ranged from 63 to 1 155, Froude numbers ranged from 0.1 to 4.1, and the resistance coefficients were within the range of 0.13 to 68.86. The surface roughness was positively correlated with the resistance coefficient (p<0.01) and negatively correlated with the Reynolds number (p<0.05), Froude number, and flow velocity (p<0.01). The slope was positively correlated with the unit-width discharge of overland flow and the Froude number (p<0.01). The width discharge was positively correlated with the Reynolds number, Froude number, and average flow velocity (p<0.01) and negatively correlated with the resistance coefficient (p<0.01). [Conclusion] Increased surface roughness augments the resistance to overland flow and reduces the influence of flow inertia, serving as a crucial factor in determining the mean flow velocity, Froude number, and resistance coefficient. The unit-width discharge primarily influences the Reynolds number by altering the water depth and flow inertia of the overland flow. Compared with the surface roughness and unit-width discharge, the slope had the least impact on the mean flow velocity, Reynolds number, Froude number, and resistance coefficient. The relationship of the mean flow velocity and Froude number with the surface roughness, unit-width discharge, and slope can be described well by the power function. Similarly, the Reynolds number and resistance coefficient exhibited a strong power function relationship with the unit width discharge and surface roughness.

    参考文献
    [1] 王祥,陈炜,黄国鲜,等.长江上游典型丘陵山区坡耕地径流及氮磷碳流失特征[J].环境工程技术学报,2024,14(5):1589-1598. Wang Xiang, Chen Wei, Huang Guoxian, et al. Characteristics of runoff and nitrogen, phosphorus, and carbon loss in sloping cultivated lands in the typical hilly mountainous region of the Upper Yangtze River basin [J]. Journal of Environmental Engineering Technology, 2024,14(5):1589-1598.
    [2] 卢富运,余方潜,陈杨,等.盐热联合示踪表征薄层水流剖面流速分布[J].农业工程学报,2023,39(23):85-93. Lu Fuyun, Yu Fangqian, Chen Yang, et al. Combined tracing of salt and heat to characterize velocity profile of sheet flow [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023,39(23):85-93.
    [3] 谷方正,张会兰,王铃涵,等.基于PIV的渐变地表粗糙度对坡面流水动力特性的影响[J].水土保持学报,2023,37(6):18-24. Gu Fangzheng, Zhang Huilan, Wang Linghan, et al. The influence of gradient surface roughness on the hydrodynamic characteristics of overland flow based on PIV [J]. Journal of Soil and Water Conservation, 2023,37(6):18-24.
    [4] 王静雯.坡面流水动力学特性及增阻机制[D].陕西杨凌:西北农林科技大学,2020. Wang Jingwen. Hydrodynamic Characteristics of overland flow and its increasing resistance mechanisms [D]. Yangling, Shaanxi: Northwest A&F University, 2020.
    [5] 张旖璇,马岚,薛梦华,等.不同地表粗糙度坡面流水力学特性试验研究[J].陕西师范大学学报(自然科学版),2023,51(6):1-10. Zhang Yixuan, Ma Lan, Xue Menghua, et al. Experimental study on hydraulic characteristics of overland flow under different surface roughness [J]. Journal of Shaanxi Normal University (Natural Science Edition), 2023,51(6):1-10.
    [6] 张宝琦,王兵,许欢欢,等.黄土高原不同降雨强度下生物土壤结皮对坡面流水动力参数的影响[J].水土保持研究,2024,31(3):128-134. Zhang Baoqi, Wang Bing, Xu Huanhuan, et al. Effects of biological soil crust on dynamic parameters of slope flow under different rainfall intensities in the Loess Plateau [J]. Research of Soil and Water Conservation, 2024,31(3):128-134.
    [7] 王伟,余方潜,卢富运,等.基于热传递过程的薄层水流流速测量方法及装置[J].水土保持学报,2023,37(6):97-103. Wang Wei, Yu Fangqian, Lu Fuyun, et al. A method and instrument for measurement of sheet flow velocity based on the heat transport processes [J]. Journal of Soil and Water Conservation, 2023,37(6):97-103.
    [8] 梁志权,卓慕宁,郭太龙,等.不同雨强及坡度下坡面流的水动力特性[J].生态环境学报,2015,24(4):638-642. Liang Zhiquan, Zhuo Muning, Guo Tailong, et al. Effects of rainfall intensity and slope gradient on hydrodynamic characterisics of overland flow [J]. Ecology and Environmental Sciences, 2015,24(4):638-642.
    [9] Giménez R, Govers G. Interaction between bed roughness and flow hydraulics in eroding rills [J]. Water Resources Research, 2001,37(3):791-799.
    [10] 郑良勇,李占斌,李鹏.黄土区陡坡径流水动力学特性试验研究[J].水利学报,2004,35(5):46-51. Zheng Liangyong, Li Zhanbin, Li Peng. Experimental study on hydraulic characteristics of runoff on steep slope in loess area [J]. Journal of Hydraulic Engineering, 2004,35(5):46-51.
    [11] 施明新.地表粗糙度对坡面流水力特性的影响研究[D].陕西杨凌:西北农林科技大学,2015. Shi Mingxin. Influence of surface roughness on hydraulic characteristics of overland flow [D]. Yangling, Shaanxi: Northwest A&F University, 2015.
    [12] 刘洋,孙保平,杨坪坪,等.模拟植被地表覆盖率与地表粗糙度对坡面流流速的影响[J].浙江农业学报,2017,29(3):498-505. Liu Yang, Sun Baoping, Yang Pingping, et al. Effect of simulated vegetation coverage and surface roughness on overland flow velocity [J]. Acta Agriculturae Zhejiangensis, 2017,29(3):498-505.
    [13] Abrahams A D, Li Gang, Parsons A J. Rill hydraulics on a semiarid hillslope, southern Arizona [J]. Earth Surface Processes and Landforms, 1996,21(1):35-47.
    [14] 梁音,杨轩,潘贤章,等.南方红壤丘陵区水土流失特点及防治对策[J].中国水土保持,2008(12):50-53. Liang Yin, Yang Xuan, Pan Xianzhang, et al. Characteristics of soil and water loss and countermeasures for prevention and control of hilly red soil region in south [J]. Soil and Water Conservation in China, 2008(12):50-53.
    [15] 王玉朝.红壤侵蚀特征与环境因子的关系[J].云南地理环境研究,2013,25(1):30-35. Wang Yuchao. Relationship between the environmental factors and erosion characteristics of red soil [J]. Yunnan Geographic Environment Research, 2013,25(1):30-35.
    [16] 李芦頔,吴冰,李鑫璐,等.土壤侵蚀中的片蚀研究综述[J].地球科学进展,2021,36(7):712-726. Li Ludi, Wu Bing, Li Xinlu, et al. Sheet erosion study in soil erosion: A review [J]. Advances in Earth Science, 2021,36(7):712-726.
    [17] 范贤超.绥江中低产田地资源评价[J].农村实用技术,2020(2):77-79. Fan Xianchao. Evaluation of low and medium yield farmland resources in Suijiang [J]. Rural Practical Technology, 2020(2):77-79.
    [18] 张光辉.坡面薄层流水动力学特性的实验研究[J].水科学进展,2002,13(2):159-165. Zhang Guanghui. Study on hydraulic properties of shallow flow [J]. Advances in Water Science, 2002,13(2):159-165.
    [19] 敬向锋,吕宏兴,张宽地,等.不同糙率坡面水力学特征的试验研究[J].水土保持通报,2007,27(2):33-38. Jing Xiangfeng, Lu Hongxing, Zhang Kuandi, et al. Experimental study of overland flow hydromechanics under different degrees of roughness [J]. Bulletin of Soil and Water Conservation, 2007,27(2):33-38.
    [20] 胡世雄,靳长兴.坡面流与坡面侵蚀动力过程研究的最新进展[J].地理研究,1998,17(3):103-110. Hu Shixiong, Jin Changxing. The recent development of the study on overland flow and hillslope processes [J]. Geographical Research, 1998,17(3):103-110.
    [21] 查轩,黄少燕,陈世发.退化红壤地土壤侵蚀与坡度坡向的关系: 基于GIS的研究[J].自然灾害学报,2010,19(2):32-39. Zha Xuan, Huang Shaoyan, Chen Shifa. Relationship between erosion of degenerated red soil and terrain slope/aspect: A GIS-based research [J]. Journal of Natural Disasters, 2010,19(2):32-39.
    [22] Zhuang Xiaohui, Wang Wei, Ma Yuying, et al. Spatial distribution of sheet flow velocity along slope under simulated rainfall conditions [J]. Geoderma, 2018,321:1-7.
    [23] 江忠善,宋文经.坡面流速的试验研究[J].中国科学院西北水土保持研究所集刊,1988(1):46-52. Jiang Zhongshan, Song Wenjing. An experimental study on the velocity of slope flow [J]. Memoir of Northwestern Institute of Soil and Water Conservation Academia Sinica, 1988(1):46-52.
    [24] 曾荣昌,张玉启,何丙辉,等.喀斯特槽谷区不同岩石与坡面夹角下集中流侵蚀水动力学特征[J].土壤学报,2023,60(3):762-775. Zeng Rongchang, Zhang Yuqi, He Binghui, et al. Hydrodynamic characteristics of concentrated flow under different angles between rock and slope in the karst trough valley area [J]. Acta Pedologica Sinica, 2023,60(3):762-775.
    [25] 龚正威.坡面薄层水沙两相流水力特性研究[D].甘肃兰州:兰州交通大学,2022. Gong Zhengwei. Study on the flow characteristics of the two phases of overland flow [D]. Lanzhou, Gansu: Lanzhou Jiaotong University, 2022.
    [26] Polyakov V O, Nearing M A. Sediment transport in rill flow under deposition and detachment conditions [J]. Catena, 2003,51(1):33-43.
    [27] 翟艳宾,吴发启,王健,等.不同人工糙率床面水力学特性的试验研究[J].水土保持通报,2012,32(6):38-42. Zhai Yanbin, Wu Faqi, Wang Jian, et al. Hydraulic characteristics of artificial surfaces with different roughness [J]. Bulletin of Soil and Water Conservation, 2012,32(6):38-42.
    [28] 施明新,吴发启,田国成,等.地表粗糙度对坡面流水动力学参数的影响[J].灌溉排水学报,2015,34(7):83-87. Shi Mingxin, Wu Faqi, Tian Guocheng, et al. Influence of surface roughness on hydrodynamic parametersof overland flow [J]. Journal of Irrigation and Drainage, 2015,34(7):83-87.
    [29] 杨锦,吕宏兴,上官周平.薄层水流水力特性试验研究[J].灌溉排水学报,2008,27(4):58-60. Yang Jin, Lv Hongxing, Shangguan Zhouping. Experiment study on hydraulic properties of overland flow [J]. Journal of Irrigation and Drainage, 2008,27(4):58-60.
    [30] 余冰,王军光,蔡崇法,等.不同模拟糙度定床坡面集中水流水力学特性研究[J].水土保持学报,2015,29(2):50-54. Yu Bing, Wang Junguang, Cai Chongfa, et al. Study on hydraulic properties of concentrated flow under different artificial surface roughness [J]. Journal of Soil and Water Conservation, 2015,29(2):50-54.
    相似文献
    引证文献
引用本文

陈峰庭,谭青芳,黄钰涵,赵明全,常志勇,吴嫡,黄子轩,韦娟.不同地表粗糙度红壤坡面流水动力学特性[J].水土保持通报,2025,45(1):30-39

复制
分享
文章指标
  • 点击次数:57
  • 下载次数: 126
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-05
  • 最后修改日期:2024-11-04
  • 在线发布日期: 2025-02-22