基于矩阵判别法的江西省上犹县崩岗危险性评价
作者:
中图分类号:

P694,S157.1

基金项目:

国家自然科学基金项目“不同降雨情景下赣南花岗岩区崩岗侵蚀易发性空间预测研究”(42107489); 水利部重大科技项目“水土流失综合治理智能管理模型研发”(CKSD2022735/TB)


Risk evaluation of Benggang in Shangyou County, Jiangxi Province based on matrix discriminant method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 调查和研究江西省上犹县崩岗特征,并对其危险性进行评价,为该区崩岗治理优先级决策提供数据支撑和科学依据。[方法] 江西省上犹县为研究区,在全面调查崩岗及其危害特征的基础上,根据崩岗危险发生“三要素”原理,选择崩岗规模、发育状态等作为崩岗主体危险潜能指标,选择房屋、道路、耕园地等危害受体并结合危害距离作为危害程度指标,构建基于矩阵判别法的崩岗危险性评价指标体系,探讨基于矩阵判别法评价崩岗危险性的准确性。[结果] ①上犹县共有崩岗227个,其中已治理崩岗25个,未治理崩岗202个,发育状态以活跃型为主,规模以大型居多,形态类型以瓢形为主,崩岗危害对象以耕园地为主,危害距离以小于10 m为主。②上犹县内,无、小、中、大、极大5个危险等级的崩岗占崩岗数量的比例分别为47.5%,14.9%,15.8%,14.9%和6.9%,现场复核验证准确度达到80%。③在上犹县,大和极大危险等级的崩岗主要分布于营前镇与水岩乡,少部分位于梅水乡与黄埠镇,需优先治理。[结论] 矩阵判别法具有较好的准确性,且指标易获取,方法易操作,适用于对崩岗危险性的评价。

    Abstract:

    [Objective] The distribution characteristics of Benggang in Shangyou County, Jiangxi Province was analyzed, and its risk was evaluated, so as to provide data support and scientific basis for priority decision-making of Benggang governance. [Methods] Shangyou County, Jiangxi Province was taken as the research area. Based on the comprehensive investigation of Benggang and its hazard characteristics, according to the principle of three elements of Benggang risk, the scale and development status of Benggang were selected as the main risk potential indicators of the main body of Benggang. Hazard receptors such as houses, roads, and farmland were selected and combined with the hazard distance as the hazard degree index. The risk evaluation index system of Benggang based on the matrix discriminant method was constructed to explore the accuracy of this method in evaluating the Benggang risk. [Results] ① There were 227 Benggang in Shangyou County, of which 25 had been controlled and 202 had not been controlled. The type of development status was mostly active, scale was mostly large, morphological type was mainly dipper, hazard object was mainly farmland, and hazard distance was mainly less than 10 m. ② In Shangyou County, the proportions of the five risk levels of no, small, medium, large, and great to the number of Benggang was 47.5%,14.9%,15.8%,14.9% and 6.9%, respectively, and the accuracy of on-site verification reached 80%. ③ The Benggang of large and extremely dangerous levels in Shangyou County was mainly distributed in Yingqian Town and Shuiyan Township, and a small part was located in Meishui Township and Huangbu Town, which needs priority treatment. [Conclusion] The matrix discriminant method proposed in this study is accurate and the indicators are easy to obtain. The method is easy to operate and is applicable to the evaluation of the risk of Benggang.

    参考文献
    [1] 程冬兵,张晶鑫,郭飞,等.南方崩岗调查内容与方法探讨[J].中国水利,2024(6):68-72. Cheng Dongbing, Zhang Jingxin, Guo Fei, et al. Discussion on the content and method of slope collapse investigation in Southern China [J]. China Water Resources, 2024(6):68-72.
    [2] 程冬兵,李定强,胡建民,等.崩岗侵蚀风险评估及分类防控关键技术研究[M].北京:科学出版社,2018. Cheng Dongbing, Li Dingqiang, Hu Jianmin, et al. Research on key technologies of collapse erosion risk assessment and classification prevention and control [M]. Beijing: Science Press, 2018.
    [3] 冯舒悦,王军光,文慧,等.赣南崩岗侵蚀区不同部位土壤抗剪强度及影响因素研究[J].土壤学报,2020,57(1):71-83. Feng Shuyue, Wang Junguang, Wen Hui, et al. Soil shear strength of collapsing erosion area in South Jiangxi of China relative to position of the soil and its influencing factors [J]. Acta Pedologica Sinica, 2020,57(1):71-83.
    [4] 郭飞,张晶鑫,山宏盼,等.不同栅格分辨率下赣州市石城县崩岗易发性评价研究[J].三峡大学学报(自然科学版),2024,46(2):63-70. Guo Fei, Zhang Jingxin, Shan Hongpan, et al. Evaluation of the susceptibility to Benggang in Shicheng County, Ganzhou City under different raster cell resolutions [J]. Journal of China Three Gorges University (Natural Sciences), 2024,46(2):63-70.
    [5] 邓羽松.南方花岗岩区崩岗特性、分布与地理环境因素研究[D].湖北武汉:华中农业大学,2018. Deng Yusong. Charanteristics, distribution and geographical, environmental factors of collapsing gully in granite region of Southern China [D]. Wuhan, Hubei: Hua Zhong Agricultural University, 2018.
    [6] Wei Yujie, Liu Zheng, Wu Xinliang, et al. Can Benggang be regarded as gully erosion? [J]. CATENA, 2021,207:105648.
    [7] 冯春杰,邓羽松,何溢钧,等.基于主成分—聚类分析的崩岗侵蚀强度评价[J].水土保持研究,2019,26(1):41-46. Feng Chunjie, Deng Yusong, He Yijun, et al. Evaluation of collapse erosion intensity based on principal component and cluster analysis [J]. Research of Soil and Water Conservation, 2019,26(1):41-46.
    [8] 倪世民.崩岗区花岗岩红壤坡面侵蚀机制与形态演变特征[D].湖北武汉:华中农业大学,2023. Ni Shimin, Slope erosion mechaniam and morphological evolution characteristics of granite red soils in Benggang areas [D]. Wuhan, HuBei: Hua Zhong Agricultural University, 2023.
    [9] 刘洪鹄,谢浩,钱峰.南方崩岗侵蚀机理及治理浅见[J].人民长江,2019,50(2):30-34. Liu Honghu, Xie Hao, Qian Feng. Mechanism of hillock collapsing erosion in Southern China and its control suggestions [J]. Yangtze River, 2019,50(2):30-34.
    [10] 呼倩,黄炎和,林金石,等.生态优先的崩岗治理主体合作博弈及利益共享研究: 基于福建省安溪县的分析[J].现代农业,2023(3):100-106. Hu Qian, Huang Yanhe, Lin Jinshi, et al. Study on cooperative game and benefit sharing of ecological priority for collapse management subjects: Based on the analysis of Anxi County, Fujian Province [J]. Modern Agriculture, 2023(3):100-106.
    [11] 程冬兵,赵元凌,张平仓,等.基于双变量熵信息法的江西省崩岗侵蚀风险评估[J].长江科学院院报,2019,36(2):27-32. Cheng Dongbing, Zhao Yuanling, Zhang Pingcang, et al. Risk assessment of collapse gully erosion in Jiangxi Province based on bivariate statistical analysis of entropy information [J]. Journal of Yangtze River Scientific Research Institute, 2019,36(2):27-32.
    [12] 程冬兵,赵元凌,张平仓,等.基于Logistic模型的江西省崩岗侵蚀风险评估[J].中国水土保持科学,2017,15(6):106-116. Cheng Dongbing, Zhao Yuanling, Zhang Pingcang, et al. On the risk assessment of collapse gully erosion in Jiangxi Province based on Logistic model [J]. Science of Soil and Water Conservation, 2017,15(6):106-116.
    [13] 郭飞,蒋广辉,黄晓虎,等.环境因子组合和负样本选取策略对花岗岩区崩岗易发性评价的影响[J].农业工程学报,2024,40(1):191-200. Guo Fei, Jiang Guanghui, Huang Xiaohu, et al. Impact of environmental factor combinations and negative sample selection on Benggang susceptibility assessment in granite areas [J]. Transactions of the Chinese Society of Agricultural Engineering, 2024,40(1):191-200.
    [14] 郭飞,赖鹏,陈洋,等.不同环境因子联接方法对崩岗易发性评价的影响[J].水土保持通报,2022,42(5):123-130. Guo Fei, Lai Peng, Chen Yang, et al. Influence of different environmental factor connection methods on Benggang susceptibility assessment [J]. Bulletin of Soil and Water Conservation, 2022,42(5):123-130.
    [15] 季翔,黄炎和,林金石,等.基于生态位适宜度的南方花岗岩区崩岗发生敏感性评价方法[J].中国农业大学学报,2017,22(10):159-168. Ji Xiang, Huang Yanhe, Lin Jinshi, et al. Sensitivity assessment method of collapsed gully occurrence in granite region of South China based on niche-fitness [J]. Journal of China Agricultural University, 2017,22(10):159-168.
    [16] 李翠漫,许贵林,卢远.广西桂东南区域崩岗关键影响因子及敏感性研究[J].长江科学院院报,2020,37(3):131-136. Li Cuiman, Xu Guilin, Lu Yuan. Key influencing factors and susceptibility of collapse gully in Southeast Guangxi, China [J]. Journal of Yangtze River Scientific Research Institute, 2020,37(3):131-136.
    [17] 林小慧,黄炎和,林金石,等.基于DPSIR模型的崩岗侵蚀风险评价及时空特征[J].农业工程学报,2023,39(18):123-131. Lin Xiaohui, Huang Yanhe, Lin Jinshi, et al. Risk assessment and spatial-temporal characteristics of Benggang erosion based on DPSIR model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023,39(18):123-131.
    [18] 管家琳,黄炎和,林金石,等.基于信息量模型与随机森林模型的崩岗风险对比评估[J].山地学报,2021,39(4):539-551. Guan Jialin, Huang Yanhe, Lin Jinshi, et al. Comparisons between Benggang risk assessments based on information model and random forest model [J]. Mountain Research, 2021,39(4):539-551.
    [19] 程冬兵,张晶鑫,郭飞,等.基于易发性和危险性评价的崩岗防治策略[J].中国水利,2024(16):69-72. Cheng Dongbing, Zhang Jingxin, Guo Fei, et al. Strategies for Benggang prevention and control based on susceptibility and harmfulness assessments [J]. China Water Resources, 2024(16):69-72.
    [20] 王天河,赖桂林,李坤,等.月度防控视角下韩江下游城镇地质灾害危险性评价[J].人民长江,2024,55(7):98-107. Wang Tianhe, Lai Guilin, Li Kun, et al. Risk assessment on geological hazards in urban areas of lower reaches of Hanjiang River from perspective of monthly prevention and control [J]. Yangtze River, 2024,55(7):98-107.
    [21] Tacconi Stefanelli C, Casagli N, Catani F. Landslide damming hazard susceptibility maps: A new GIS-based procedure for risk management [J]. Landslides, 2020,17(7):1635-1648.
    [22] 北京市市场监督管理局.地质灾害危险性评估技术规范:DB11/T 893—2021[S]. 北京: 北京市市场监督管理局, 2021. Beijing Municipal Bureau of Market Supervision and Administration. Technical specification for geological disaster risk assessment: DB11/T 893—2021[S]. Beijing: Beijing Municipal Bureau of Market Supervision and Administration, 2021.
    [23] 国家质量监督检验检疫总局, 中国国家标准化管理委员会.风险管理风险评估技术:GB/T 27921—2011[S].北京:中国标准出版社,2012. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Management Committee. Risk management risk assessment techniques: GB/T 27921—2011[S]. Beijing: China Standards Publishing House, 2012.
    [24] 刘丽娜,常煦坤,王柏仲.基于风险矩阵法的油田外浮顶罐风险管控研究[J].化工安全与环境,2023,36(11):23-25. Liu Lina, Chang Xukun, Wang B Z. Research on risk management and control of external floating roof tank in oilfield based on risk matrix method [J]. Chemical Safety & Environment, 2023,36(11):23-25.
    [25] 张平仓,程冬兵.《南方红壤丘陵区水土流失综合治理技术标准》应用指南[M].北京:中国水利水电出版社,2014. Zhang Pingcang, Cheng Dongbing. Application Guideline of “Technical Standard for Comprehensive Control of Soil and Water Loss in Red Soil Hilly Area of Southern China”[M]. Beijing:China Water Resources and Hydropower Press, 2014.
    [26] 廖凯涛,刘艳,刘荃,等.赣州市崩岗侵蚀分布特征与影响因子分析[J].水土保持研究,2021,28(6):126-130. Liao Kaitao, Liu Yan, Liu Quan, et al. Distribution characteristics and driving factors of Benggang erosion in Ganzhou City [J]. Research of Soil and Water Conservation, 2021,28(6):126-130.
    [27] 袁芳,胡松,文慧,等.江西省崩岗现状及治理对策[J].中国水利,2023(10):56-58. Yuan Fang, Hu Song, Wen Hui, et al. Current situation and control measures of landslides in Jiangxi Province [J]. China Water Resources, 2023(10):56-58.
    [28] 刘福臻,王灵,肖东升,等.基于模糊综合评判法的宁南县滑坡易发性评价[J].自然灾害学报,2021,30(5):237-246. Liu Fuzhen, Wang Ling, Xiao Dongsheng, et al. Evaluation of landslide susceptibility in Ningnan County based on fuzzy comprehensive evaluation [J]. Journal of Natural Disasters, 2021,30(5):237-246.
    [29] 陈力,丁雨淋,朱庆,等.基于元学习的广域范围滑坡易发性小样本预测[J].武汉大学学报(信息科学版),2024,49(8):1367-1376. Chen Li, Ding Yulin, Zhu Qing, et al. Few-shot prediction of landslide susceptibility based on meta-learning paradigm [J]. Geomatics and Information Science of Wuhan University, 2024,49(8):1367-1376.
    [30] 王小巍,陈砚桥,金家善,等.数据与知识双驱动的备件需求模糊预测模型[J].国防科技大学学报,2024,46(2):205-214. Wang Xiaowei, Chen Yanqiao, Jin Jiashan, et al. Spare parts demand fuzzy prediction model driven by data and knowledge [J]. Journal of National University of Defense Technology, 2024,46(2):205-214.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张晶鑫,程冬兵,郭飞,赵元凌,沈盛彧,刘烈浓.基于矩阵判别法的江西省上犹县崩岗危险性评价[J].水土保持通报,2025,45(1):158-167

复制
分享
文章指标
  • 点击次数:23
  • 下载次数: 77
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-08
  • 最后修改日期:2024-11-15
  • 在线发布日期: 2025-02-22