Carbon Density and Its Influence Factors of Pinus Tabulaeformis Plantation in Longdong Area
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    [Objective] To analyze the carbon density of Pinus tabulaeformis and its influence factors in Longdong area in order to provide theoretical basis for the evaluation of the ecological environment of the loess hilly region. [Methods] The carbon density of Pinus tabulaeformis was estimated and the influence of ecological factors on carbon density was discussed by the methods of plot investigation and biomass measurement. [Results] The carbon content in different organs of P. tabulaeformis ranged from 48.58% to 53.54%, and the average carbon density decreased in the order of stem > branch > root > leaf > cone. The carbon content of leaf, branch, and root in shrub was 43.93%, 45.62% and 42.38%, respectively. The carbon content of above-ground and below-ground in herb was 43.04% and 39.77%. The carbon content of fresh litter and decomposing litter was 43.79% and 38.83%. The carbon density of vegetation layer decreased in the order of tree layer > herb layer > shrub layer. The average carbon content in the soil layer (0-100 cm) decreased gradually with the increase of soil depth, and the carbon density had significant difference in different layers, and that in 50-100 cm soil was the highest layer. The total carbon density of P. tabulaeformis ecosystem was 52.86 t/hm2, and the vertical distribution were: soil layer(75.15%) > vegetation layer(24.14%) > litter layer(0.71%). [Conclusion] Ecological factors including average tree height, average diameter at breast height and canopy density showed highly significant correlation with the carbon density of different layers of P. tabulaeformis plantation, and undecomposed litter dry mass showed significant correlation with it. The average tree height, average diameter at breast height, canopy density, and undecomposed litter dry mass were primary factors on the carbon density of P. tabulaeformis ecosystem.

    Reference
    [1] Tans P P. How can global warming be traced to CO2[J]. Scientific American, 2006,295(6):124.
    [2] 康冰,刘世荣,张广军,等.广西大青山南亚热带马尾松、杉木混交林生态系统碳素积累和分配特征[J].生态学报,2006,26(5):1320-1329.
    [3] Brown S. Present and potential roles of forests in the global climate change debate[J].Unasylva,1996(47):3-10.
    [4] Lorenz K, Lal R. Carbon sequestration in forest ecosystems[M]. Dordrecht:Springer, 2010.
    [5] Houghton R A. Balancing the global carbon budget[J]. Annual Review of Earth and Planetary Sciences, 2007,35(1):313-347.
    [6] 张小全,李怒云,武曙红.中国实施清洁发展机制造林和再造林项目的可行性和潜力[J].林业科学,2005,41(5):139-143.
    [7] 武曙红,张小全,李俊清.CDM林业碳汇项目的泄漏问题分析[J].林业科学,2006,42(2):98-104.
    [8] 黄从德,张健,杨万勤,等.四川人工林生态系统碳储量特征[J].应用生态学报,2008,19(8):1644-1650.
    [9] 王彬,王辉,杨君珑,等.子午岭油松林林隙更新特征研究[J].林业资源管理,2007(2):60-65.
    [10] 焦醒,刘广全.陕西黄土高原油松生长状况及其影响因子分析[J].西北植物学报,2009,29(5):1026-1032.
    [11] 邓娟,上官周平.子午岭林区人工与天然油松林(Pinus tabulaeformis)养分库和碳库特征[J].生态学报,2009,29(6):3231-3240.
    [12] 贺亮,苏印泉,季志平,等.黄土高原沟壑区刺槐、油松人工林的碳储量及其分布特征研究[J].西北林学院学报,2007,22(4):49-53.
    [13] 孟蕾,程积民,杨晓梅,等.黄土高原子午岭人工油松林碳储量与碳密度研究[J].水土保持通报,2010,30(2),133-137.
    [14] 董鸣,蒋高明,孔繁志,等.陆地生物群落调查观测与分析[M].北京:中国标准出版社,1996.
    [15] 秦武明,何斌,韦善华,等.厚荚相思人工幼林生态系统碳贮量及其分布研究[J].安徽农业科学,2008,36(32):14089-14092.
    [16] 马钦彦.中国油松生物量的研究[J].北京林业大学学报,1989,11(4):1-10.
    [17] Ter-Mikaelian M T, Korzukhin M D. Biomass equations for sixty-five North American tree species[J]. Forest Ecology and Management, 1997,97(1):1-24.
    [18] 毕君,黄则舟,王振亮.刺槐单株生物量动态研究[J].河北林学院学报,1993,8(4):278-282.
    [19] 罗辑,杨忠,杨清伟.贡嘎山森林生物量和生产力的研究[J],植物生态学报,2000,24(2):191-196.
    [20] 程先富,史学正,于东升,等.兴国县森林土壤有机碳库及其与环境因子的关系[J],地理研究,2004,23(2):211-217.
    [21] 程小琴,韩海荣,康峰峰.山西油松人工林生态系统生物量、碳积累及其分布[J].生态学杂志,2012,31(10):2455-2460.
    [22] 方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学,2002,38(3):14-19.
    [23] 周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5),518-522.
    [24] 王蕾,张景群,王晓芳,等.黄土高原两种人工林幼林生态系统碳汇能力评价[J].东北林业大学学报,2010,38(7):75-78.
    [25] Watanabe Y, Masunaga T, Owusu-Sekyere E. Evaluation of growth and carbon storage as influenced by soil chemical properties and moisture on teak(Tectona grandis) in Ashanti region, Ghana[J]. Journal of Food Agriculture & Environment, 2009,7(2):640-645.
    [26] 吴丹,邵全琴,李佳,等.江西中南部红壤丘陵区主要造林树种碳固定估算[J].生态学报,2012,32(1):142-150.
    [27] 王晓丽,王嫒,石洪华,等.山东省长岛县南长山岛黑松和刺槐人工林的碳储量[J].应用生态学报,2013,24(5):1263-1268.
    [28] Goetz R U, Hritonenko N, Mur R, et al. Forest management for timber and carbon sequestration in the presence of climate change:The case of Pinus sylvestris[J]. Ecological Economics, 2013(88):86-96.
    [29] Chen Shutao, Huang Yao, Zou Jianwen, et al. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen[J]. Global and Planetary Change, 2013,100(1):99-108.
    [30] 刘恩,刘世荣.南亚热带米老排人工林碳贮量及其分配特征[J].生态学报,2012,32(16):5103-5109.
    [31] 张文辉,刘国彬.黄土高原植被生态恢复评价、问题与对策[J].林业科学,2007,43(1):102-106.
    [32] Seely B, Welham C, Blanco J A. Towards the application of soil organic matter as an indicator of forest ecosystem productivity:Deriving thresholds, developing monitoring systems, and evaluating practices[J]. Ecological Indicators, 2010,10(5):999-1008.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

曹旭平,申家朋,张文辉,张辉.陇东地区油松人工林碳密度及其影响因素[J].水土保持通报英文版,2015,35(3):359-364

Copy
Share
Article Metrics
  • Abstract:1125
  • PDF: 1465
  • HTML: 0
  • Cited by: 0
History
  • Received:April 01,2014
  • Revised:April 15,2014
  • Online: April 05,2016