A Study on Spatial-Temporal Changes of Land Use in Combination with SOM and Dynamic Index
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • |
  • Related [20]
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    [Objective] To verify the applicability of the method that combined self-organizing map neural network (SOM) and dynamic index methods in the analysis of interactions between land use types and structures in a certain period, and to analyze the evolution of land use types and structures from multiple scales in order to provide reference for the sustainable development and utilization of urban land resources.[Methods] Based on the land use data of Huangshi City, Hubei Province in 2005, 2010 and 2015, we used the single dynamic degree of land use to analyze the change and transition characteristics of land use types at the city level, and constructed a SOM model to express the spatial distribution of land use structures at the township-level, and explored the overall land use evolution with a method integrated K-means clustering and comprehensive dynamic degree of land use.[Results] ① The area of build-up land increased obviously, and they were transformed from cultivated land, woodland and unused land. The area of cultivated land was continuously decreased, as a result of conversions into construction land, mining land and bare land. The area of unutilized land reduced substantially. ② The transformation among types of land use structure was mainly from cultivated land to urban/cultivated land. ③ The central, western, and southern towns had experienced their slight changes in land use; while the towns in the northeast changed significantly, so did its structure.[Conclusion] The method in combination with SOM and land use dynamic index is suitable for comprehensive analysis about the spatial and temporal evolution of land use.

    Reference
    [1] Mooney H A, Duraiappah A, Larigauderie A. Evolution of natural and social science interactions in global change research programs[J]. PNAS, 2013,110(S):3665-3672.
    [2] Sterling S M, Ducharne A, Polcher J. The impact of global land-cover change on the terrestrial water cycle[J]. Nature Climate Change, 2012,3(4):385-390.
    [3] Turner B L I, Skole D L, Sanderson S, et al. Land-use and land-cover change:Science/research plan[J]. Global Change Report, 1995, 43(1995):669-679.
    [4] 李家洋,陈泮勤,葛全胜,等.全球变化与人类活动的相互作用:我国下阶段全球变化研究工作的重点[J].地球科学进展, 2005,20(4):371-377.
    [5] 何华春,周汝佳.基于景观格局的盐城海岸带土地利用时空变化分析[J].长江流域资源与环境,2016,25(8):1191-1199.
    [6] 李平,李秀彬,刘学军.我国现阶段土地利用变化驱动力的宏观分析[J].地理研究,2001,20(2):129-138.
    [7] Li Tianhong, Li Wenkai. Multiple land use change simulation with Monte Carlo approach and CA-ANN model, a case study in Shenzhen, China[J]. Environmental Systems Research, 2015,4(1):1-10.
    [8] 岳文泽,徐建华,徐丽华.基于遥感影像的城市土地利用生态环境效应研究:以城市热环境和植被指数为例[J].地理学报,2006,26(5):1450-1460.
    [9] 王计平,程复,汪亚峰,等.生态恢复背景下无定河流域土地利用时空变化[J].水土保持通报,2014,34(5):237-243.
    [10] 徐苏,张永勇,窦明,等.长江流域土地利用时空变化特征及其径流效应[J].地理科学进展,2017.36(4):426-436.
    [11] 佟光臣,林杰,陈杭,等. 1986-2013年南京市土地利用/覆被景观格局时空变化及驱动力因素分析[J]. 水土保持研究,2017,24(2):240-245.
    [12] Lamb P F, Mundermann A,Bartlett R M. Visualizing changes in lower body coordination with different types of foot or those using self-organizing maps[J].Gait & Posture, 2011,34(4):485-489.
    [13] Ren Jihong, Chen Jiangcheng, Wang Nan. Visual analysis of SOM network in fault diagnosis[J]. Coal Mine Machinery, 2009, 22(11):333-338.
    [14] 焦利民,吴苏.利用自组织网络分析1990-2010年中国主要城市扩展特征[J].武汉大学学报:信息科学版,2014,39(12):435-1471.
    [15] 齐建超,刘慧平,高啸峰.基于自组织映射法的时间序列土地利用变化的时空可视化[J].地球信息科学学报,2017,19(6):792-799.
    [16] 刘纪远,张增祥,庄大方,等.20世纪90年代中国土地利用变化时空特征及其成因分析[J].地理研究, 2003,22(1):1-12.
    [17] 刘纪远,匡文慧,张增祥,等.20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J].地理学报,2014,69(1):3-14.
    [18] Arnon K, Zhihao Qin, Bo Wu, et al. Spatio-temporal dynamics of land-use and land-cover in the Mu Us sandy land, China, using the change vector analysis technique[J]. Remote Sensing, 2014,6(10):9316-9339.
    [19] 刘永强,龙花楼.黄淮海平原农区土地利用转型及其动力机制[J].地理学报,2016,26(5):515-530.
    [20] 黄端,李仁东,邱娟,等.武汉城市圈土地利用时空变化及政策驱动因素分析[J].地球信息科学学报,2017,19(1):80-90.
    [21] Raffaella F, Barbara M, Giulia C. A landscape analysis of land cover change in the Municipality of Rome(Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001[J]. Landscape and Urban Planning, 2011, 100(1/2):117-128.
    [22] Samat N, Hasni R, Elhadary Y A E. Modelling land use changes at the Peri-urban areas using geographic information systems and cellular automata model[J]. Journal of Sustainable Development, 2011,4(6):72-84.
    [23] 史培军,陈晋,潘耀忠.深圳市土地利用变化机制分析[J].地理学报,2000,55(2):151-160.
    [24] 黄石市统计局.黄石市2015年国民经济和社会发展统计公报[R].湖北黄石:黄石市统计局,2015.
    [25] Kohonen T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 1982,43(1):59-69.
    [26] 董长虹.MATLAB神经网络与应用[M].北京:国防工业出版社,2007.
    [27] 朱会义,李秀彬.关于区域土地利用变化指数模型方法的讨论[J].地理学报,2003,58(5):643-650.
    [28] 刘瑞,朱道林.基于转移矩阵的土地利用变化信息挖掘方法探讨[J].资源科学,2010,32(8):1544-1500.
    [29] Kohonen T. Self-Organizing Maps[M].3th ed. Berlin: Springer, 2001.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李玲,陈飞燕,林爱文.结合SOM与动态度方法的土地利用及其时空演变研究[J].水土保持通报英文版,2018,38(4):129-134,141

Copy
Share
Article Metrics
  • Abstract:944
  • PDF: 979
  • HTML: 0
  • Cited by: 0
History
  • Received:December 12,2017
  • Revised:January 22,2018
  • Online: September 18,2018