Migration Characteristics of Heavy Metals in Soil During Water Loss Process
Author:
Clc Number:

S157.2;X53

  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The migration characteristics of heavy metals in the surface soil of sloping farmland during water erosion process were analyzed in order to provide guidance for soil quality protection and for defense strategies against heavy metal migration and diffusion in karst soil erosion areas in China. [Methods] A simulated rain experiment was used to study loss characteristics of heavy metals (Cu, Ni, Cd, and Cr) from runoff and erosion in farmland under different slope conditions (10°, 15°, 20°, and 25°) and rainfall intensities (50, 70, 90, and 120 mm/h). [Results] ① Initial runoff and sediment yield increased with increasing of rainfall intensity and slope, then tended to gradually become stable. The critical slope for sediment yield was 20° under different rainfall intensities and slopes; ② Heavy metals mainly existed in granular form in the erosion process of topsoil, and migration amount was proportional to rainfall intensity. Heavy metal loss in granular form first reached a peak value under a rainfall intensity of 120 mm/h and a slope of 20°. Dissolved heavy metals varied with rainfall intensity, except for dissolved Ni that reached a maximum variation range of 0.0044 mg/L at 50 mm/h. Cu, Cd, and Cr all reached a maximum variation range of loss at 70 mm/h, and the maximum variation range of Cr was 0.0098 mg/L. The loss of dissolved heavy metals had no obvious relationship with slope change. ③ The heavy metal particle loss was related to sediment yield, and the high coefficient of determination for Cr (R2=0.99) indicated that sediment yield could well predict Cr particle loss. [Conclusion] 20° is the critical slope for sediment yield, and that migration of heavy metals is mainly in granular form. The fitting effect between sediment yield and heavy metal elements (Cu, Ni, CD, and Cr) is good, indicating that there is a strong correlation between heavy metal elements (Cu, Ni, CD, and Cr) and sediment yield.

    Reference
    [1] Xiong Muqi, Sun Ranhao, Chen Liding. A global comparison of soil erosion associated with land use and climate type[J]. Geoderma, 2019,343:31-39.
    [2] 耿韧,张光辉,洪大林,等.我国水蚀区坡耕地土壤分离能力的空间分布与影响因素[J].水土保持学报,2020,34(3):156-161.
    [3] 刘巍,杨建军,汪君,等.准东煤田露天矿区土壤重金属污染现状评价及来源分析[J].环境科学,2016,37(5):1938-1945.
    [4] 马芊红,张光辉,耿韧,等.我国水蚀区坡耕地土壤重金属空间分布及其污染评价[J].水土保持研究,2017,24(2):112-118.
    [5] 陈三雄,周春坚,谢江松,等.广东大宝山矿区堆积土水土流失对重金属迁移量的影响[J].生态与农村环境学报,2019,35(1):16-21.
    [6] Vaezi A R, Ahmadi M, CerdàA. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls[J]. Science of the Total Environment, 2017,583:382-392.
    [7] 胡立志,刘鸿雁,刘青栋,等.贵州喀斯特地区辣椒镉的累积特性及土壤风险阈值研究[J].生态科学,2021,40(3):193-200.
    [8] 张广映,吴琳娜,欧阳坤长,等.都柳江上游沿岸喀斯特地区土壤重金属污染特征及风险评价[J].中国岩溶,2021,40(3):495-503.
    [9] 姚成斌,周明忠,熊康宁,等.喀斯特高原石漠化治理示范区土壤和农作物重金属含量特征[J].中国环境科学,2021,41(1):316-326.
    [10] 宋书巧,胡伟.广西某喀斯特流域土壤重金属Cd分布及其来源分析[J].科学技术与工程,2015,15(17):237-241.
    [11] 王兴富,黄先飞,胡继伟,等.喀斯特山地Ni-Mo废弃矿区周围镉污染及农作物富集特征[J].环境化学,2020,39(7):1872-1882.
    [12] 周丽,杨丰,金宝成,等.喀斯特山区不同土地利用方式对土壤重金属的影响[J].北方园艺,2019(8):110-117.
    [13] Liu Yifan, Dunkerley D, López-Vicente M, et al. Trade-off between surface runoff and soil erosion during the implementation of ecological restoration programs in semiarid regions:A Meta-analysis[J]. Science of the Total Environment, 2020,712:136477.
    [14] 杨洋,铁柏清,张鹏,等.降雨和植被覆盖对土壤重金属流失的影响[J].水土保持学报,2011,25(1):39-42,46.
    [15] 王衡,冯新斌,王建旭,等.香根草及添加剂对模拟降雨条件下汞污染土壤和矿渣地表径流中汞含量的影响[J].生态学杂志,2011,30(5):922-927.
    [16] 陈科兵,吴发启,姚冲.黄土高原南部地区人工模拟暴雨条件下不同坡度谷子坡耕地产流产沙过程[J].水土保持学报,2021,35(3):90-95,103.
    [17] 孙子媛,文雪峰,吴攀,等.喀斯特地区典型风化剖面重金属超标程度及元素迁移特征研究[J].地球与环境,2019,47(1):50-56.
    [18] 李晓晓,韩瑞芳,陈倩倩,等.土壤重金属迁移转化领域研究的文献计量分析[J].土壤通报,2020,51(3):733-740.
    [19] 张祖莲,洪斌,黄英,等.降雨作用下红土型坡面径流特性与土壤侵蚀的关系研究[J].山地学报,2017,35(4):535-542.
    [20] 贵州省土壤普查办公室,贵州省土壤[M].贵州贵阳:贵州科技出版社,1994.
    [21] 彭旭东,戴全厚,杨智,等.喀斯特山地石漠化过程中地表地下侵蚀产沙特征[J].土壤学报,2016,53(5):1237-1248.
    [22] 罗光杰,王世杰,李阳兵,等.岩溶地区坡耕地时空动态变化及其生态服务功能评估[J].农业工程学报,2014,30(11):233-243.
    [23] 魏复盛,国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [24] 生态环境部.土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法:HJ491-2019[S].北京:中国环境科学出版社,2019.
    [25] 路培.土壤结皮形成机制及空间分布对侵蚀的影响研究[D].陕西杨凌:西北农林科技大学,2018.
    [26] 杨恒,黄英,周丹,等.干湿循环对云南红土渗透性的影响[J].科学技术与工程,2019,19(27):289-297.
    [27] 杨宇琼,戴全厚,李昌兰,等进.模拟降雨条件下喀斯特坡耕地氮磷元素地下漏失特征[J].中国水土保持科学,2018,16(3):59-67.
    [28] 彭旭东,戴全厚,李昌兰.中国西南喀斯特坡地水土流失/漏失过程与机理研究进展[J].水土保持学报,2017,31(5):1-8.
    [29] 张信宝,王世杰.浅议喀斯特流域土壤地下漏失的界定[J].中国岩溶,2016,35(5):602-603.
    [30] 张会茹,郑粉莉,耿晓东.地面坡度对红壤坡面土壤侵蚀过程的影响研究[J].水土保持研究,2009,16(4):52-54,59.
    [31] 陈晓燕,王茹,卓素娟,等.不同降雨强度下紫色土陡坡地侵蚀泥沙养分特征[J].水土保持学报,2012,26(6):1-5.
    [32] 向宇国,张丹,陈凡,等.降雨和坡度对植烟坡耕地产流产沙的影响[J].西南农业学报,2021,34(5):1121-1127.
    [33] Horton R E. Erosional development of streams and their drainage basins:hydrophysical apprach to quantitative morphology[J]. Geological Society of America Bulletin, 1945, 56.
    [34] 梁志权,张思毅,卓慕宁,等.不同雨强及坡度对华南红壤侵蚀过程的影响[J].水土保持通报,2017,37(2):1-6.
    [35] 朱昌宇,黄道友,朱奇宏,等.模拟降雨条件下污染土壤中重金属元素径流迁移特征[J].水土保持学报,2012,26(4):49-53.
    [36] 陶权,姚景,何树福,等.不同降雨强度下污染土重金属元素随径流迁移转化特征[J].水土保持学报,2015,29(2):65-68.
    [37] 林彩,李文权,刘洋,等.厦门湾表层海水重金属元素的迁移过程规律研究[J].厦门大学学报(自然科学版),2013,52(3):388-394.
    [38] 孙丽丽,査轩,黄少燕,等.不同降雨强度对紫色土坡面侵蚀过程的影响[J].水土保持学报,2018,32(5):18-23.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

徐蝶,赵士杰,蔡雄飞,王济,谢刚,郁鑫杰,赵帅.水蚀过程中土壤重金属元素的迁移特征[J].水土保持通报英文版,2022,42(1):83-92

Copy
Share
Article Metrics
  • Abstract:153
  • PDF: 700
  • HTML: 0
  • Cited by: 0
History
  • Received:July 23,2021
  • Revised:September 29,2021
  • Online: March 12,2022