Biological Characteristics of Five Wood-Rot Fungi in Sand-buried Sections of Salix Psammophila
Author:
Clc Number:

S727.23

  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Objective] The influence of culture conditions (carbon source, nitrogen source, and pH value) on the growth of wood-rot fungi was analyzed in order to provide a theoretical basis for prolonging the service period of Salix psammophila sand barriers. [Methods] Trichoderma citrinovicide, Xylogone sphaerospora, Trichoderma harzianum, Trichoderma koningiopsis, and Aspergillus niger in sand-buried sections of S. psammophila were the five fungi species used as research objects. The growth rate and biomass of mycelium under different culture conditions (solid and liquid) were investigated to determine the optimal growth conditions for each fungi species. [Results] ① Under solid culture conditions, T. citrinoviride, X. sphaerospora, T. harzianum, and A. niger grew fastest when glucose was used as the carbon source, and their growth rates were 12.97, 8.56, 13.25, and 5.22 mm/d, respectively; The best nitrogen source for T. citrinoviride was ammonium sulfate, and the growth rate was 13.06 mm/d. The best nitrogen source for X. sphaerospora, T. harzianum, and T. koningiopsis was peptone, and their growth rates were 9.44, 13.17, and 8.78 mm/d, respectively; The optimum pH value for the five species of wood-rot fungi was between 5 and 7. ② Under liquid culture conditions, glucose was the best carbon source for the five species of wood-rot fungi, and the biomass values per 100 ml of culture medium reached 446.67, 454.67, 728.67, 687.67, and 713.00 mg, respectively. The most suitable nitrogen source for T. citrinoviride, X. sphaerospora, T. harzianum, and T. koningiopsis was peptone. The biomass of A. niger was 610.00 mg when ammonium chloride was used as the nitrogen source. The biomass of the five species of wood-rot fungi was large in the pH value range from 5 to 7. [Conclusion] Under solid and liquid conditions, the most suitable carbon source for T. citrinoviride, X. sphaerospora, and T. harzianum is glucose, the most suitable nitrogen source is peptone, and the pH value is between 5 and 6. Under the liquid culture condition, the most suitable carbon source for T. koningiopsis is glucose, the most suitable nitrogen source is peptone, and the pH value is between 5 and 6. Under the liquid culture condition, the most suitable carbon source for A. niger is glucose, the most suitable nitrogen source is ammonium chloride, and the pH value is between 5 and 6.

    Reference
    [1] 高永,邱国玉,丁国栋,等.沙柳沙障的防风固沙效益研究[J].中国沙漠,2004,24(3):365-370.
    [2] 任余艳,胡春元,贺晓,等.毛乌素沙地巴图塔沙柳沙障对植被恢复作用的研究[J].水土保持研究,2007,14(2):13-15.
    [3] 王瑞东,党晓宏,高永,等.毛乌素沙地沙柳沙障破损规律与植被恢复的研究[J].西南林业大学学报,2019,39(3):71-77.
    [4] 张志伟,尹惠妍,周尧治,等.不同设置年限沙障对沙漠土壤理化性质的影响[J].西北林学院学报,2020,35(5):68-77.
    [5] 高菲,高永,高强,等.沙柳沙障对土壤理化性质的影响[J].内蒙古农业大学学报(自然科学版),2006,27(2):39-42.
    [6] 蒙仲举,任晓萌,高永.半隐蔽式沙柳沙障的防风阻沙效益[J].水土保持通报,2014,34(3):178-180.
    [7] 龚萍,高永,迟悦春.沙柳沙障腐蚀过程中微生物的作用[J].内蒙古农业大学学报(自然科学版),2011,32(3):138-142.
    [8] Carlsson F, Edman M, Jonsson B G. Increased CO2 evolution caused by heat treatment in wood-decaying fungi[J]. Mycological Progress, 2017,16(5):513-519.
    [9] 郝蓉蓉,郭海东,杨成德,等.西藏设施辣椒根腐病病原的分离及鉴定[J].西北农业学报,2015,24(12):139-143.
    [10] 于海燕,路振远.腐朽木材的种类及其对材质的影响[J].黑龙江科技信息,2013(17):272.
    [11] Sánchez-Corzo L D, Álvarez-Gutiérrez P E, Meza-Gordillo R, et al. Lignocellulolytic enzyme production from wood rot fungi collected in Chiapas, Mexico, and their growth on lignocellulosic material[J]. Journal of Fungi, 2021,7(6):450.
    [12] 李俊凝,李秋实,魏玉莲.丽江老君山国家公园木腐真菌区系组成与分布特征[J].应用生态学报,2020,31(1):259-265.
    [13] 董秀芹,袁红莉,高同国.木质素降解酶及相关基因研究进展[J].生物技术通报,2014(11):62-72.
    [14] 魏玉莲.森林生态系统中木腐真菌群落形成机理及生态功能[J].生态学杂志,2021,40(2):534-543.
    [15] 李俊凝,李通,魏玉莲.丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系[J].生物多样性,2019,27(8):880-886.
    [16] 刘江,袁勤,张立欣,等.库布齐沙漠北缘不同人工灌木林地土壤肥力质量状况[J].西北林学院学报,2021,36(2):46-53.
    [17] 单金雪,李增平,张宇,等.枸树干基腐朽病病原菌鉴定及其生物学特性研究[J].热带作物学报,2021,42(10):2952-2957.
    [18] 谢放,张生香,陈京津,等.恒温和变温培养对羊肚菌菌丝生长及菌核形成影响的比较研究[J].中国野生植物资源,2010,29(3):37-40,61.
    [19] 宿红艳,王磊,高兴喜,等.白灵菇不同菌株生物学特性的研究[J].食品科学,2008,29(7):256-259.
    [20] 冉永红,马琳静,谢淑琴,等.羊肚菌母种培养基比较试验[J].食用菌,2021,43(2):34-36,39.
    [21] 贺云龙,齐玉春,彭琴,等.外源碳输入对陆地生态系统碳循环关键过程的影响及其微生物学驱动机制[J].生态学报,2017,37(2):358-366.
    [22] 安丽芸.微生物多样性及外加碳源对土壤碳矿化的影响[D].山西太原:山西大学,2018.
    [23] Zeng Niankai, Wang Qiuying, Su Mingsheng. Submerged culture conditions for production of mycelial biomass and exopolysaccharides by Phellinus baumii[J]. China Journal of Chinese Materia Medica, 2008,33(15):1798.
    [24] Le Jia, Hu Shunzhen, Xu Mei. Optimisation of submerged culture conditions for the production of mycelial biomass and exopolysaccharide by Pleurotus nebrodensis[J]. Annals of Microbiology, 2007,57(3):389-393.
    [25] 顾琼楠,欧翔,褚世海,等.牛筋草生防菌NJC-16的分离鉴定及生物学特性研究[J].中国生物防治学报,2021,37(4):817-825.
    [26] Ha Siyoung, Lee Donghwan, Yang Jaekyung, et al. Optimization of medium components and incubation time for the production of Paecilomyces tenuipes mycelia in submerged culture[J]. Journal of Mushroom, 2021,19(1):1-8.
    [27] Adour L, Couriol C, Amrane A. Organic or mineral nitrogen source during Penicillium camembertii growth on a glucose limited medium[J]. Enzyme and microbial technology, 2006,38(1/2):55-59.
    [28] 陈龙,吴兴利,于维,等. Bacillus velezensis 157混合固态发酵生产多种木质纤维素酶的发酵条件优化[J].中国农业大学学报,2019,24(9):71-78.
    [29] 许美玲,朱教君,许爱华,等.不同培养基、pH值、水势和温度对2种外生菌根真菌生长的影响[J].辽宁林业科技,2007(5):20-22.
    [30] 周慧杰.培养液pH对外生菌根真菌生长影响分析[J].中国食用菌,2019,38(8):42-44.
    [31] 龚萍.沙柳沙障腐蚀过程及防腐抗蚀效果研究[D].内蒙古呼和浩特:内蒙古农业大学,2012.
    [32] 屈明华,俞元春,李生,等.丛枝菌根真菌对矿质养分活化作用研究进展[J].浙江农林大学学报,2019,36(2):394-405.
    [33] 孙芳利,Prosper N K,吴华平,等.木竹材防腐技术研究概述[J].林业工程学报,2017,2(5):1-8.
    [34] 秦理哲,胡拉,杨章旗,等.季铵铜防腐剂对马尾松木材化学性质的影响[J].森林与环境学报,2019,39(6):667-672.
    [35] 范慧青.木材炭化防腐处理对微生物生存条件的影响研究[D].内蒙古呼和浩特:内蒙古农业大学,2014.
    Related
    Cited by
Get Citation

段晓婷,高永,梁钰镁,王瑞东,赵晨,郭鑫.沙柳沙障沙埋段5种木腐真菌的生物学特性[J].水土保持通报英文版,2022,42(1):93-98

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 08,2021
  • Revised:October 19,2021
  • Online: March 12,2022