Landslide Classification Threshold in Huangshan City of Anhui Province Based on Rainfall Intensity-Duration
Author:
Clc Number:

P64;P642.22

  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The rainfall intensity-duration threshold of rainfall-induced landslides in Huangshan City, Anhui Province was studied in order to provide technical support for detailed landslide early warning in all districts and counties of Huangshan City. [Methods] Rainfall duration of induced landslides was determined by comparing the effective rainfall before landslides at historical landslide points, and by using corresponding rainfall data in Huangshan City from 2004 to 2019. The rainfall intensity-duration (I-D) threshold curve for each district and county was established based on the empirical threshold Caine model. Considering the applicability of I-D curve in disaster early warning, and taking the landslide point in Shexian County as an example, the rainfall events that induced landslides in Shexian County were divided into the small and moderate rain group, the heavy rain group, and the heavy rain or above group according to the rain intensity standard of the meteorological forecast. The I-D threshold of combined rainfall in Shexian County was established according to the grouping classification of rain intensity. [Results] Most of the rainfall-induced landslides in Huangshan City were induced by long and medium duration rainfall. The complex I-D threshold could better reflect the inducing effect of various rainfall conditions on landslides, and this threshold could be directly used for early warning of landslides using precipitation forecasts. [Conclusion] I-D threshold has strong regional applicability, and the landslide rainfall threshold grouped by rainfall intensity according to precipitation forecasts is suitable for the construction of a landslide early warning system in this region.

    Reference
    [1] 申怀飞,杨清洁,魏亿鑫,等.基于GIS的湖南省滑坡灾害风险和损失评估[J].水土保持通报,2020,40(6):146-152,329.
    [2] 宫清华,黄光庆.基于气象-地形-水文-地质-人文耦合的滑坡灾害空间预警研究[J].灾害学,2013,28(3):20-23.
    [3] Guzzetti F, Peruccacci S, Rossi M, et al. The rainfall intensity-duration control of shallow landslides and debris flows:An update[J]. Landslides, 2008,5(1):3-17.
    [4] Guzzetti F, Peruccacci S, Rossi M, et al. Rainfall thresholds for the initiation of landslides in central and Southern Europe[J]. Meteorology and Atmospheric Physics, 2007,98(3/4):239-267.
    [5] 李巍岳,刘春, Marco Scaioni,等.基于滑坡敏感性与降雨强度-历时的中国浅层降雨滑坡时空分析与模拟[J].中国科学:地球科学,2017,47(4):473-484.
    [6] 麻土华,李长江,孙乐玲,等.浙江地区引发滑坡的降雨强度-历时关系[J].中国地质灾害与防治学报,2011,22(2):20-25.
    [7] 赵衡,宋二祥.诱发区域性滑坡的降雨阈值[J].吉林大学学报(地球科学版),2011,41(5):1481-1487.
    [8] 丛佳伟.天水地区降雨型滑坡的降雨阈值研究[D].甘肃兰州:兰州大学,2020.
    [9] 燕晓莹,阎长虹,郜泽郑.镇江地区降雨导致滑坡规律统计分析[J].高校地质学报,2019,25(5):772-778.
    [10] Li Changjiang, Ma Tuhua, Zhu Xingsheng. Ai Net and GIS based regional predictionsy stem for the spatial and temporal probability of rainfall-triggered landslides[J]. Natural Hazards, 2010,52(1):57-58.
    [11] 伍宇明,兰恒星,高星,等.台风暴雨型滑坡降雨阈值曲线研究:以福建地区为例[J].工程地质学报,2014,22(2):255-262.
    [12] 詹良通,李鹤,陈云敏,等.东南沿海残积土地区降雨诱发型滑坡预报雨强-历时曲线的影响因素分析[J].岩土力学,2012,33(3):872-880,886.
    [13] 林巍,李远耀,徐勇,等.湖南慈利县滑坡灾害的临界降雨量阈值研究[J].长江科学院院报,2020,37(2):48-54.
    [14] 盛逸凡,李远耀,徐勇,等.基于有效降雨强度和逻辑回归的降雨型滑坡预测模型[J].水文地质工程地质,2019,46(1):156-162,172.
    [15] 赵海燕,殷坤龙,陈丽霞,等.基于有效降雨阈值的澧源镇滑坡灾害危险性分析[J].地质科技通报,2020,39(4):85-93.
    [16] 潘国林,洪天求,林桂香.皖南山区滑坡分类及形成机制研究[J].合肥工业大学学报(自然科学版),2016,39(4):543-547.
    [17] 刘海知,马振峰,范广洲.四川省典型区域滑坡泥石流与降水的关系[J].水土保持通报,2016,36(6):73-77.
    [18] 费晓燕,柳锦宝,屈伯强,等.四川省降雨诱发滑坡灾害的气象预警模型[J].水土保持通报,2017,37(5):315-321,327.
    [19] 黄健敏,赵国红,廖芸婧,等.基于Logistic回归的降雨诱发区域地质灾害易发性区划及预报模型建立:以安徽歙县为例[J].中国地质灾害与防治学报,2016,27(3):98-105.
    [20] 王治兵.激发泥石流的前期降雨分割方法研究[D].四川成都:成都理工大学,2015.
    [21] 詹钱登,李明熹,黄婷卉.土石流发生降雨预警模式之研究[J].中华水土保持学报(中国台湾),2004,35(3):273-283.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李子豪,王钧,郭婷婷,侯捷,张俊香,宫清华,张洪岩.基于降雨强度-历时的安徽省黄山市滑坡分组阈值研究[J].水土保持通报英文版,2022,42(1):184-190

Copy
Share
Article Metrics
  • Abstract:331
  • PDF: 775
  • HTML: 0
  • Cited by: 0
History
  • Received:July 23,2020
  • Revised:October 18,2021
  • Online: March 12,2022