Evaluation of Water Conservation Function of Litters of Pinus Tabuliformis Forest in Ziwuling Forest Region of Loess Plateau
Author:
Clc Number:

S715.7

  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The water conservation function of litters of artificial Pinus tabuliformis forests in the Ziwuling forest region of the Loess Plateau was determined in order to provide a theoretical basis for function-oriented stand improvement.[Methods] In August 2021, artificial Pinus tabuliformis forests with six stand densities (2 222, 3 200, 4 802, 6 250, 7 503, 9 286 plants/hm2) were selected in the Lianjiabian Forest Farm in Ziwuling, Heshui County, Gansu Province. The coordinate comprehensive evaluation method was used to evaluate the water conservation function of P. tabuliformis forests.[Results] ① The thickness and volume of litters ranged from 2.78 to 7.30 cm and from 14.97 to 52.41 t/hm2, respectively. With the increase of stand density, the thickness and volume of litters showed a "single peak" change, with the peak appeared at 4 802 plants/hm2. ② The maximum water-holding rate (192.98%) and effective interception rate (152.04%) of litter for the 3 200 plants/hm2 stand were higher, while the maximum water-holding capacity (101.46 t/hm2) and effective interception amount (67.92 t/hm2) of litter for the 4 802 plants/hm2 stand were excellent. The semi-decomposed layer played a major role in the precipitation interception process of litters. ③ The water-holding rate/amount, water absorption rate, and soaking time of litters showed logarithmic responses (R2>0.956, 0.962) and a power function response (R2>0.998), respectively. ④ The water conservation function of litters was better when the density of the P. tabuliformis forest was 4 802 plants/hm2.[Conclusion] When only considering the water conservation function of litters of an artificial P. tabuliformis forest, the density of the forest should be 4 800 plants/hm2. In the future, research on the canopy and soil layer of the P. tabuliformis forest should be strengthened. The soil moisture vegetation bearing capacity and the water utilization law of the forest should be comprehensively considered to determine the stand density of the forest that provides the best water conservation function.

    Reference
    [1] 韩皓爽, 万荣荣.森林生态质量评估方法研究进展[J].生态科学, 2021, 40(4):212-222.
    [2] 王根绪, 邓伟, 杨燕, 等.山地生态学的研究进展、重点领域与趋势[J].山地学报, 2011, 29(2):129-140.
    [3] Brantley S, Ford C R, Vose J M.Future species composition will affect forest water use after loss of eastern hemlock from Southern Appalachian forests[J].Ecological Applications, 2013, 23(4):777-790.
    [4] Edwards D P, Tobias J A, Sheil D, et al.Maintaining ecosystem function and services in logged tropical forests[J].Trends in Ecology & Evolution, 2014, 29(9):511-520.
    [5] 梁文俊, 丁国栋, 周美思, 等.冀北山地油松和落叶松林下枯落物的水文效应[J].水土保持通报, 2012, 32(4):71-74.
    [6] 赵禹宁, 陆莹, 王晓静, 等.森林枯落物水文效应研究进展与趋势[J].中国林副特产, 2021(1):113-114.
    [7] 姜博涵.我国不同气候带森林生态系统中凋落物和林下植被去除对土壤氮矿化的影响[D].河南开封:河南大学, 2019.
    [8] Wohl E, Barros A, Brunsell N, et al.The hydrology of the humid tropics[J].Nature Climate Change, 2012, 2(9):655-662.
    [9] Zhang Haicheng, Yuan Wenping, Dong Wenjie, et al.Seasonal patterns of litterfall in forest ecosystem worldwide[J].Ecological Complexity, 2014, 20:240-247.
    [10] De Long J R, Dorrepaal E, Kardol P, et al.Understory plant functional groups and litter species identity are stronger drivers of litter decomposition than warming along a boreal forest post-fire successional gradient[J].Soil Biology and Biochemistry, 2016, 98:159-170.
    [11] Saura-Mas S, Estiarte M, Peñuelas J, et al.Effects of climate change on leaf litter decomposition across post-fire plant regenerative groups[J].Environmental and Experimental Botany, 2012, 77:274-282.
    [12] He Xingbing, Lin Yonghui, Han Guomin, et al.Litterfall interception by understorey vegetation delayed litter decomposition in Cinnamomum camphora plantation forest[J].Plant and Soil, 2013, 372(1/2):207-219.
    [13] 韩春, 陈宁, 孙杉, 等.森林生态系统水文调节功能及机制研究进展[J].生态学杂志, 2019, 38(7):2191-2199.
    [14] 侯贵荣, 毕华兴, 魏曦, 等.黄土残塬沟壑区刺槐林枯落物水源涵养功能综合评价[J].水土保持学报, 2019, 33(2):251-257.
    [15] 艾彪, 黄云, 朱元皓, 等.赣南丘陵区典型林分水源涵养功能评价[J].水土保持通报, 2021, 41(1):197-205.
    [16] 江萍.不同林龄油松人工林抚育间伐效应研究[D].北京:北京林业大学, 2015.
    [17] 马德辉, 冯家祥.子午岭林区油松人工林全周期抚育管理对策措施[J].农业与技术, 2019, 39(14):73-74.
    [18] 陈莉莉, 王得祥, 张宋智, 等.不同密度油松人工林土壤特性及水源涵养功能研究[J].西北农林科技大学学报(自然科学版), 2013, 41(7):141-149.
    [19] 李民义, 张建军, 郭宝妮, 等.晋西黄土区不同密度油松人工林林下植物多样性及水文效应[J].生态学杂志, 2013, 32(5):1083-1090.
    [20] 张栓堂, 石丽丽, 曲世伟, 等.冀北山地人工油松林水文效应研究[J].南水北调与水利科技, 2016, 14(4):117-122.
    [21] 王玲, 赵广亮, 周红娟, 等.八达岭林场不同密度油松人工林枯落物水文效应[J].生态环境学报, 2019, 28(9):1767-1775.
    [22] 宣立辉, 佟彦国, 张军, 等.冀北山区油松人工林林分密度对枯落物层和土壤层水文特征的影响[J].林业与生态科学, 2019, 34(1):15-23.
    [23] 莎仁图雅, 齐容镰, 郗雯, 等.内蒙古土石山区油松林枯落物层水文生态功能研究[J].内蒙古林业科技, 2020, 46(1):8-11.
    [24] 魏宏征, 肖战峰, 何小军, 等.甘肃子午岭林区不同林分水源涵养能力研究[J].林业资源管理, 2020(4):87-94.
    [25] 耿琦.云冷杉针阔混交林枯落物持水特性研究[D].北京:北京林业大学, 2020.
    [26] 刘贤德, 张学龙, 赵维俊, 等.祁连山西水林区亚高山灌丛水文功能的综合评价[J].干旱区地理, 2016, 39(1):86-94.
    [27] 侯贵荣.晋西黄土区低效刺槐林林分结构优化研究[D].北京:北京林业大学, 2020.
    [28] 塔莉, 张丽茹.冀北山地天然次生林枯落物层水文生态功能对不同林分密度的响应[J].水土保持研究, 2020, 27(6):46-51.
    [29] 张勇强, 李智超, 厚凌宇, 等.林分密度对杉木人工林下物种多样性和土壤养分的影响[J].土壤学报, 2020, 57(1):239-250.
    [30] 高迪.六盘山华北落叶松林枯落物时空特征变化及其水文效应[D].北京:北京林业大学, 2019.
    [31] 张缓.黄土高原不同植被带土壤理化性质及枯落物持水特征研究[D].陕西杨凌:西北农林科技大学, 2021.
    [32] 李奕, 满秀玲, 蔡体久, 等.大兴安岭山地樟子松天然林土壤水分物理性质及水源涵养功能研究[J].水土保持学报, 2011, 25(2):87-91.
    [33] 周巧稚, 毕华兴, 孔凌霄, 等.晋西黄土区不同密度刺槐林枯落物层水文生态功能研究[J].水土保持学报, 2018, 32(4):115-121.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

孙于卜,欧晓彬,陈轲林,马文昌,林飞,王智威,龚磊.黄土高原子午岭油松林枯落物的水源涵养功能评价[J].水土保持通报英文版,2022,42(3):8-15

Copy
Share
Article Metrics
  • Abstract:659
  • PDF: 932
  • HTML: 0
  • Cited by: 0
History
  • Received:November 16,2021
  • Revised:January 03,2022
  • Online: August 02,2022