Effects of Plant Density Regulation on Soil Physical Properties and Plant Diversity of Plantations in Yellow River Flood Plain of Northern Shandong Province
Author:
Clc Number:

S725.6

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Objective] The effects of plant density regulation on soil physical properties and plant diversity of different plant stands in the Yellow River flood plain were analyzed in order to provide a theoretical basis for optimizing stand growth, improving soil physical properties, and increasing understory vegetation diversity.[Methods] Three plantations (Fraxinus chinensis, Salix matsudana, Ulmus pumila) growing under the same site conditions in the Wangzhuang Forest Farm, Lijin County, Dongying City, Shandong Province were selected as the research objects. The soil bulk density, porosity, water-holding capacity, and vegetation growth of different stand densities (3 m×3 m, 3 m×6 m) were investigated.[Results] ① Reducing stand density to 3 m×6 m increased crown width, diameter at breast height, and tree height of each stand, as well as the biomass and diversity of understory plants. The increase of each stand factor index in the U. pumila plantation was significantly greater than observed for the other stands. ② The stand density of 3 m×6 m reduced the non-capillary porosity of the same soil layer, and increased the capillary porosity and total porosity of the same soil layer. ③ The stand density of 3 m×6 m significantly increased the saturated water-holding capacity and capillary water-holding capacity of the 0-20 cm soil layer in F. chinensis, S. matsudana, and U. pumila plantations (p<0.05), and significantly increased the soil moisture content of the 20-40 cm soil layer in the U. pumila plantation (p<0.05).[Conclusion] Decreasing stand density resulted in a significant increase in biomass and diversity of understory plants in the U. pumila plantation, and soil capillary porosity and total porosity in the F. chinensis plantation were also increased significantly. Decreasing stand density also significantly increased soil saturated water-holding capacity and capillary water-holding capacity in the 0-20 cm soil layer of F. mandshurica, U. pumila, and S. matsudana plantations, and soil water content in the 20-40 cm soil layer of the U. pumila plantation was also significantly increased.

    Reference
    [1] 赵杰, 樊莉丽, 吴明作, 等.养殖蚯蚓对黄泛沙质平原杨树人工林土壤及生长的影响[J].中南林业科技大学学报, 2021, 41(4):39-46.
    [2] 成向荣, 虞木奎, 张建锋, 等.沿海防护林工程营建技术研究综述[J].世界林业研究, 2009, 22(1):63-67.
    [3] 盛炜彤.关于我国人工林长期生产力的保持[J].林业科学研究, 2018, 31(1):1-14.
    [4] 张培, 庞圣江, 杨保国, 等.抚育间伐对江南油杉林分生长的影响[J].西北林学院学报, 2020, 35(4):84-88.
    [5] 李萌, 陈永康, 徐浩成, 等.不同间伐强度对南亚热带杉木人工林林下植物功能群的影响[J].生态学报, 2020, 40(14):4985-4993.
    [6] 罗桂生, 马履一, 贾忠奎, 等.油松人工林不同大小林隙环境因子差异性比较[J].中南林业科技大学学报, 2020, 40(5):86-94.
    [7] 谢锦, 闫巧玲, 张婷.间伐对日本落叶松人工林林下更新木本植物组成和生长影响的时间效应[J].应用生态学报, 2020, 31(8):2481-2490.
    [8] Roderick M L, Berry S L.Linking wood density with tree growth and environment:A theoretical analysis based on the motion of water[J].New Phytologist, 2001, 149(3):473-485.
    [9] King D A, Davies S J, Supardi M N N, et al.Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia[J].Functional Ecology, 2005, 19(3):445-453.
    [10] Chen Lei, Swenson N G, Ji Niuniu, et al.Differential soil fungus accumulation and density dependence of trees in a subtropical forest[J].Science, 2019, 366(6461):124-128.
    [11] 王凯, 那恩航, 张日升, 等.不同密度下沙地樟子松碳、氮、磷化学计量及养分重吸收特征[J].生态学杂志, 2021, 40(2):313-322.
    [12] Ádám R, Ódor P, Bölöni J.The effects of stand characteristics on the understory vegetation in Quercus petraea and Q.cerris dominated forests[J].Community Ecology, 2013, 14(1):101-109.
    [13] 高孝威, 苏和, 白艳, 等.不同林龄华北落叶松人工林林下植被与土壤理化特性变化特征[J].内蒙古林业科技, 2021, 47(2):10-14.
    [14] 王丽娜, 吴俊文, 董琼, 等.抚育间伐对云南松非结构性碳和化学计量特征的影响[J].北京林业大学学报, 2021, 43(8):70-82.
    [15] Bastianelli C, Ali A A, Beguin J, et al.Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties[J].Biogeosciences, 2017, 14(14):3445-3459.
    [16] 李晓燕, 段爱国, 张建国, 等.不同良种与初植密度杉木林分密度指标动态特征[J].林业科学研究, 2021, 34(2):72-80.
    [17] 王玲.林分密度对油松人工林群落结构和植物多样性的影响[J].生态环境学报, 2020, 29(12):2328-2336.
    [18] 陈贝贝, 姜俊, 陆元昌, 等.间伐强度对马尾松人工林冠下套种树种生长的影响[J].北京林业大学学报, 2021, 43(1):58-65.
    [19] 侯磊, 张硕新, 陈云明, 等.林分密度对人工油松林下植物的影响[J].西北林学院学报, 2013, 28(3):46-52.
    [20] 李麟辉, 张一平, 谭正洪, 等.哀牢山亚热带常绿阔叶林与林外草地太阳辐射比较[J].生态学杂志, 2011, 30(7):1435-1440.
    [21] Zhang Jun, Zhao Yusen, Xin Ying.Changes in and evaluation of surface soil quality in Populus×Xiaohei shelterbelts in Midwestern Heilongjiang Province, China[J].Journal of Forestry Research, 2021, 32(3):1221-1233.
    [22] 马克平, 黄建辉, 于顺利, 等.北京东灵山地区植物群落多样性的研究(Ⅱ):丰富度、均匀度和物种多样性指数[J].生态学报, 1995, 15(3):268-277.
    [23] 陈龙斌, 孙昆, 张旭, 等.林隙干扰对森林生态系统的影响[J].应用生态学报, 2021, 32(2):701-710.
    [24] 王玉魁, 杨文斌, 卢琦, 等.半干旱典型草原区白榆防护林的密度与生物量试验[J].干旱区资源与环境, 2010, 24(11):144-150.
    [25] 蔺鑫, 李想, 王安宁, 等.冀东滨海盐碱地造林密度对白榆生长和土壤理化性质的影响[J].西北林学院学报, 2018, 33(5):66-74.
    [26] 陈静, 赵成章, 王继伟, 等.不同密度旱柳的树冠构型与光截获[J].植物生态学报, 2017, 41(6):661-669.
    [27] 董威, 刘泰瑞, 覃志杰, 等.不同林分密度油松天然林土壤理化性质及微生物量碳氮特征研究[J].生态环境学报, 2019, 28(1):65-72.
    [28] 柳晓娜, 贾国栋, 余新晓.不同密度杨树人工林的林地涵养水源功能研究[J].环境科学与技术, 2017, 40(10):8-13.
    [29] 简永旗, 吴家森, 盛卫星, 等.间伐和林分类型对森林凋落物储量和土壤持水性能的影响[J].浙江农林大学学报, 2021, 38(2):320-328.
    [30] 李永涛, 魏海霞, 王振猛, 等.黄河三角洲不同林分类型对土壤水分物理特性的影响[J].中南林业科技大学学报, 2020, 40(8):106-112.
    [31] 王文全, 王世绩, 刘雅荣, 等.粉煤灰复田立地上杨、柳、榆、刺槐根系的分布和生长特点[J].林业科学, 1994, 30(1):25-33.
    [32] 李永涛, 王霞, 周健, 等.基于林龄的黄河三角洲白蜡人工林细根分布与活力研究[J].干旱区资源与环境, 2020, 34(1):171-177.
    Related
    Cited by
Get Citation

王立超,夏江宝,赵玉尧,陈萍.密度调控对鲁北黄泛平原区人工林土壤物理性质及植物多样性的影响[J].水土保持通报英文版,2022,42(3):43-48,56

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 13,2021
  • Revised:December 07,2021
  • Online: August 02,2022