Temporal and Spatial Change Characteristics of Soil Conservation Function in Sourthern Jiangxi Province
Author:
Clc Number:

S157.1

  • Article
  • | |
  • Metrics
  • |
  • Reference [39]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The temporal and spatial change characteristics of a soil conservation function in Southern Jiangxi Province were analyzed in order to provide a scientific basis for improving soil conservation capacity and maintaining an ecological security barrier in southern hills.[Methods] The InVEST model was used to calculate the soil retention capacity of different land use types, different elevations, different slopes, and different counties in Sourthern Jiangxi Province using data observed during 2000, 2010, and 2018. The spatial correlations between soil conservation capacity and NDVI, and the temporal and spatial characteristics of soil conservation functions in Sourthern Jiangxi Province were analyzed.[Results] ① The areas of cultivated land, irrigated forest land, water, and unused land decreased, while the areas of urban land and rural residential land increased. ② The value of soil retention capacity increased from 189.93 t/(hm2·yr) to 190.50 t/(hm2·yr), and the peak values were observed in forest land, which increased from 259.85 t/(hm2·yr) to 262.03 t/(hm2·yr). ③ The value of soil retention capacity in the boundary region was higher than in the central region. The value increased first and then decreased with increasing altitude, and increased with increasing slope. ④ Soil retention capacity and NDVI were positively correlated (p<0.01). The high-high agglomeration areas were located in the northern, western, and southern regions; the high-low agglomeration area was located in the central region (including Yudu County); and the low-low agglomeration area was located in Zhanggong County, Gan County, and Nankang County.[Conclusion] Soil retention capacity in the Gannan region was highly associated with land use type, elevation, slope, NDVI, and economic development level. To improve the value of soil retention capacity, soil protection measures in low-altitude and low-slope areas should be increased. Additionally, improving soil retention capacity in the middle and low mountainous areas by increasing the spatial variation of land use types in the low and middle mountain areas would reduce soil erosion and ecological risk in mountainous areas.

    Reference
    [1] 康琳琦, 周天财, 干友民, 等.1984-2013年青藏高原土壤侵蚀时空变化特征[J].应用与环境生物学报, 2018, 24(2):245-253.
    [2] 张利超, 王辉文, 谢颂华.江西省水土流失现状与发展趋势分析[J].水土保持研究, 2016, 23(1):356-359.
    [3] 赣州市统计局.赣州市统计年鉴[J].中国统计出版社, 2019.
    [4] 王敏, 阮俊杰, 姚佳, 等.基于InVEST模型的生态系统土壤保持功能研究:以福建宁德为例[J].水土保持研究, 2014, 21(4):184-189.
    [5] Wall D H, Six J.Give soils their due[J].Science, 2015, 347(6223):695.
    [6] Wischmeier W H, Smith D D.Predicting Rainfall Erosion Losses:A Guide To Conservation Planning[J].United States.Department of Agriculture.Agriculture Handbook(USA), 1978.
    [7] 马良, 金陶陶, 文一惠, 等.InVEST模型研究进展[J].生态经济, 2015, 31(10):126-131.
    [8] 周彬, 余新晓, 陈丽华, 等.基于InVEST模型的北京山区土壤侵蚀模拟[J].水土保持研究, 2010, 17(6):9-13.
    [9] 李婷, 刘康, 胡胜, 等.基于InVEST模型的秦岭山地土壤流失及土壤保持生态效益评价[J].长江流域资源与环境, 2014, 23(9):1242-1250.
    [10] 陈童尧, 贾燕锋, 王佳楠, 等.基于InVEST模型的祁连山国家级自然保护区土壤保持现状与功能[J].干旱区研究, 2020, 37(1):150-159.
    [11] 刘晓娜, 裴厦, 陈龙, 等.基于InVEST模型的门头沟区生态系统土壤保持功能研究[J].水土保持研究, 2018, 25(6):168-176.
    [12] 徐煖银, 孙思琦, 薛达元, 等.基于地形梯度的赣南地区生态系统服务价值对人为干扰的空间响应[J].生态学报, 2019, 39(1):97-107.
    [13] 李恒凯, 杨柳, 雷军, 等.利用HJ-CCD影像的红壤丘陵区土壤侵蚀分析:以赣州市为例[J].遥感信息, 2016, 31(3):122-129.
    [14] 杨洁, 汪邦稳.赣南地区水土流失时空变化和评价研究[J].中国水土保持, 2011(12):10-12.
    [15] 饶恩明, 肖燚, 欧阳志云, 等.海南岛生态系统土壤保持功能空间特征及影响因素[J].生态学报, 2013, 33(3):746-755.
    [16] 何莎莎, 朱文博, 崔耀平, 等.基于InVEST模型的太行山淇河流域土壤侵蚀特征研究[J].长江流域资源与环境, 2019, 28(2):426-439.
    [17] 章文波, 付金生.不同类型雨量资料估算降雨侵蚀力[J].资源科学, 2003, 25(1):35-41.
    [18] 田宇, 朱建华, 李奇, 等.三峡库区土壤保持时空分布特征及其驱动力[J].生态学杂志, 2020, 39(4):1164-1174.
    [19] 冯强, 赵文武.USLE/RUSLE中植被覆盖与管理因子研究进展[J].生态学报, 2014, 34(16):4461-4472.
    [20] 许联芳, 张海波, 张明阳, 等.南方丘陵山地带土壤保持功能及其经济价值时空变化特征[J].长江流域资源与环境, 2015, 24(9):1599-1605.
    [21] 朱青, 国佳欣, 郭熙, 等.基于随机森林算法的土壤侵蚀影响因子研究:以赣江上游流域为例[J].水土保持通报, 2020, 40(2):59-68.
    [22] Zhang Chaosheng, McGrath D.Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of Southeastern Ireland from two different periods[J].Geoderma, 2004, 119(3/4):261-275.
    [23] 高建岗, 黄锐.基于耕地质量指数和空间自相关的苏南地区耕地保护分区[J].水土保持研究, 2019, 26(3):213-218.
    [24] 卞鸿雁, 庞奖励, 任志远, 等.基于土地利用变化的土壤保持效益时空动态:以黄土高原南部为例[J].生态学杂志, 2012, 31(9):2391-2396.
    [25] 汤国安, 宋佳.基于DEM坡度图制图中坡度分级方法的比较研究[J].水土保持学报, 2006, 20(2):157-160.
    [26] 吴照柏.森林资源规划设计调查中地形因子自动提取初探[J].中南林业调查规划, 2007, 26(3):51-53.
    [27] 贾芳芳.基于InVEST模型的赣江流域生态系统服务功能评估[D].北京:中国地质大学(北京), 2014.
    [28] 赵清贺, 冀晓玉, 徐珊珊, 等.河岸植被对坡面径流侵蚀产沙的阻控效果[J].农业工程学报, 2018, 34(13):170-178.
    [29] 刘慧明, 高吉喜, 刘晓, 等.国家重点生态功能区2010-2015年生态系统服务价值变化评估[J].生态学报, 2020, 40(6):1865-1876.
    [30] 赖观路, 廖冬梅.龙南县"六个结合"抓水土流失整治[J].中国水土保持, 2005(12):69-70.
    [31] 温郁胜, 谢贵芳, 陈保华.于都县水土保持成效与做法[J].中国水土保持, 2001(10):36-37.
    [32] 于东升, 陈洋, 马利霞, 等.兴国县水土流失治理历程与新时期重点治理方向及策略[J].中国水土保持, 2021(1):63-67.
    [33] 任频频, 黄峰, 李保国.黄淮海平原旱作农田土壤有机质含量的空间分异特征[J].土壤学报, 2022, 59(2):440-450.
    [34] 朱青, 周自翔, 刘婷, 等.黄土高原植被恢复与生态系统土壤保持服务价值增益研究:以延河流域为例[J].生态学报, 2021, 41(7):2557-2570.
    [35] 焦菊英, 王宁, 杜华栋, 等.土壤侵蚀对植被发育演替的干扰与植物的抗侵蚀特性研究进展[J].草业学报, 2012, 21(5):311-318.
    [36] 李理, 赵芳, 朱连奇, 等.淇河流域生态系统服务权衡及空间分异机制的地理探测[J].生态学报, 2021, 41(19):7568-7578.
    [37] 燕玲玲, 巩杰, 徐彩仙, 等.子午岭地区土壤保持服务时空变化及其影响因素[J].水土保持学报, 2021, 35(1):188-197.
    [38] 赣州市统计局.赣州市统计年鉴[J].江西省赣州市统计局, 2001.
    [39] 孙永明, 叶川, 黄欠如, 等.赣南脐橙园不同水保措施应用效果研究[J].中国水土保持, 2016(8):9-12.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

罗诚康,杜思敏,郑博福,谢泽阳,吴之见,朱锦奇.赣南地区土壤保持功能的时空变化特征[J].水土保持通报英文版,2022,42(3):57-65

Copy
Share
Article Metrics
  • Abstract:398
  • PDF: 1047
  • HTML: 0
  • Cited by: 0
History
  • Received:October 24,2021
  • Revised:January 11,2022
  • Online: August 02,2022