Soil Erosion Characteristics of Sugarcane-Growing Watershed Based on RUSLE
Author:
Clc Number:

S157.1

  • Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • |
  • Related [20]
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    [Objective] The soil erosion status and the relationships between soil erosion intensity and different slope and land use types in a small watershed of an intensive sugarcane-growing area with a typical lateritic soil were investigated in order to provide a theoretical reference for soil erosion control in this area of the Guangxi Zhuang Autonomous Region.[Methods] With the support of GIS spatial analysis technology, the revised universal soil loss equation (RUSLE) was used to quantitatively estimate soil loss.[Results] ① The Nala watershed slope ranged between 0° and 35°, and the slope farmland (sugarcane) and forest land (eucalyptus) accounted for 82.85% and 10.99%, respectively, of the total land use area, while roads and channels accounted for 6.16%. The average soil erosion rate of the Nala watershed in 2020 was 22.97 t/(ha·yr) (classified as mild erosion), and this rate was 4.6 times of the allowable soil loss rate of 5 t/(ha·yr) stipulated by the ministry of Water Resources for the southern red soil hilly region. ② Soil erosion mainly occurred on slopes ranging from 5° to 25°, and areas with slopes in this range were the key areas to target for the prevention and control of soil erosion. ③ Among different land use types, the average erosion rate of forest land (eucalyptus) was 53.59 t/(ha·yr), which was 2.84, 2.12, and 27.91 times of the erosion rate of slope farmland (sugarcane), roads, and channels, respectively.[Conclusion] The RUSLE model can be used to estimate soil erosion and soil erosion intensity distribution characteristics of different slopes and land use types in sugarcane-growing areas by inputting relevant parameters and processing data with software. Land use types such as slope farmland (sugarcane), forest land (eucalyptus), and roads should be properly planned and managed so as to take targeted and effective soil and water conservation measures.

    Reference
    [1] 谭宏伟, 刘永贤, 周柳强, 等.基于滴灌条件下的甘蔗施肥减量技术研究[J].热带作物学报, 2013, 34(1):24-28.
    [2] 罗思妮.甘蔗联合种植机械化技术探讨[J].农业技术与装备, 2021(5):44-45.
    [3] 付兴涛, 张丽萍.红壤丘陵区坡长对作物覆盖坡耕地土壤侵蚀的影响[J].农业工程学报, 2014, 30(5):91-98.
    [4] Hartanto H, Prabhu R, Widayat A S E, et al.Factors affecting runoff and soil erosion:Plot-level soil loss monitoring for assessing sustainability of forest management[J].Forest Ecology and Management, 2003, 180(1/2/3):361-374.
    [5] Rabesiranana N, Rasolonirina M, Solonjara A F, et al.Assessment of soil redistribution rates by 137Cs and 210Pbex in a typical Malagasy agricultural field[J].Journal of Environmental Radioactivity, 2016, 152:112-118.
    [6] 赵珩钪, 曹斌挺, 焦菊英.黄土丘陵沟壑区退耕坡地不同植物群落的土壤侵蚀特征[J].中国水土保持科学, 2017, 15(3):105-113.
    [7] 田义超, 黄远林, 张强, 等.北部湾钦江流域土壤侵蚀及其硒元素流失评估[J].中国环境科学, 2019, 39(1):257-273.
    [8] Sinha D, Joshi V U.Application of universal soil loss equation (USLE) to recently reclaimed badlands along the Adula and Mahalungi rivers, Pravara Basin, Maharashtra[J].Journal of the Geological Society of India, 2012, 80(3):341-350.
    [9] Lu D, Li G, Valladares G S, et al.Mapping soil erosion risk in Rondônia, Brazilian Amazonia:Using RUSLE, remote sensing and GIS[J].Land Degradation & Development, 2004, 15(5):499-512.
    [10] 朱青, 国佳欣, 郭熙, 等.基于随机森林算法的土壤侵蚀影响因子研究:以赣江上游流域为例[J].水土保持通报, 2020, 40(2):59-68.
    [11] 谢如林, 谭宏伟, 周柳强, 等.甘蔗种植体系水土及氮磷养分流失研究[J].西南农业学报, 2013, 26(4):1572-1577.
    [12] 杨任翔, 邱凡, 王坚桦, 等.雨型和甘蔗种植对赤红壤坡面土壤侵蚀特征的影响[J].水土保持学报, 2021, 35(1):65-70.
    [13] Renard K G.Predicting soil erosion by water:A guide to conservation planning with the revised universal soil Loss equation (RUSLE)[M].US:Agriculture Handbook, 1997.
    [14] Wischmeier W H, Smith D D.Rainfall energy and its relationship to soil loss[J].Transactions, American Geophysical Union, 1958, 39(2):285.
    [15] Williams J, Nearing M, Nicks A, et al.Using soil erosion models for global change studies[J].Journal of Soil and Water Conservation, 1996, 51(5):381-385.
    [16] 刘盼, 任春颖, 王岩松, 等.基于RUSLE模型的梅河口市土壤侵蚀动态分析[J].水土保持通报, 2019, 39(1):172-179.
    [17] 高永平, 康茂东, 何明珠, 等.基于无人机可见光波段对荒漠植被覆盖度提取的研究:以沙坡头地区为例[J].兰州大学学报(自然科学版), 2018, 54(6):770-775.
    [18] 蔡崇法, 丁树文, 史志华, 等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报, 2000, 14(2):19-24.
    [19] 冯强, 赵文武.USLE/RUSLE中植被覆盖与管理因子研究进展[J].生态学报, 2014, 34(16):4461-4472.
    [20] 中华人民共和国水利部.土壤侵蚀分类分级标准:SL 190-2007[S].北京:中国水利水电出版社, 2008.
    [21] Li Yong, Mo Yaqi, Are K S, et al.Sugarcane planting patterns control ephemeral gully erosion and associated nutrient losses:Evidence from hillslope observation[J].Agriculture, Ecosystems & Environment, 2021, 309:107289.
    [22] Abdalla K, Dickey M, Hill T, et al.Assessment of soil erosion under rainfed sugarcane in KwaZulu-Natal, South Africa[J].Natural Resources Forum, 2019, 43(4):241-252.
    [23] 梁宏温, 钟瀚涛, 温远光, 等.不同造林抚育措施对桉树人工林坡面径流特征的影响[J].南方农业学报, 2014, 45(11):2020-2025.
    [24] 王永平, 周子柯, 滕昊蔚, 等.滇南小流域3种土地利用方式下土壤侵蚀及养分流失特征[J].水土保持研究, 2021, 28(1):11-18.
    [25] 王会利, 曹继钊, 孙孝林, 等.桉树-牧草复合经营模式下水土流失和土壤肥力的综合评价[J].土壤通报, 2016, 47(6):1468-1474.
    [26] 何绍浪, 何小武, 李凤英, 等.南方红壤区林下水土流失成因及其治理措施[J].中国水土保持, 2017(3):16-19.
    [27] Li Yong, Are K S, Qin Zhaohua, et al.Farmland size increase significantly accelerates road surface rill erosion and nutrient losses in southern subtropics of China[J].Soil and Tillage Research, 2020, 204:104689.
    [28] Valim W C, Panachuki E, Pavei D S, et al.Effect of sugarcane waste in the control of interrill erosion[J].Semina:Ciências Agrárias, 2016, 37(3):1155.
    [29] 杨任翔, 邱凡, 郑佳舜, 等.赤红壤植蔗坡地坡面径流及溶解态氮磷流失特征[J].生态学报, 2022, 42(3):904-913.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘小梅,李勇,黄智刚,邓羽松,郭豪,何卿姮.基于RUSLE的蔗区小流域土壤侵蚀特征研究[J].水土保持通报英文版,2022,42(3):82-88

Copy
Share
Article Metrics
  • Abstract:951
  • PDF: 700
  • HTML: 942
  • Cited by: 0
History
  • Received:October 24,2021
  • Revised:January 06,2022
  • Online: August 02,2022