Vertical Distribution Characteristics and Influencing Factors of Soil Carbon and Nitrogen Content in Farmland on Southern Slope of Qilian Mountains
Author:
Clc Number:

S153

  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The relationships between soil carbon and nitrogen in a farmland ecosystem and soil physical and chemical properties were analyzed to provide a theoretical reference for the rational utilization of land resources in an alpine region.[Methods] Nineteen representative farmland sample plots were selected on a southern slope of the middle section of the Qilian Mountains. Total carbon (TC), total nitrogen content (TN), organic carbon content (SOC), and water content (SWC) of soils in the study plots were measured in the laboratory, and soil bulk density (ρb), particle size (clay, silt, sand), pH value, and other physical and chemical properties were determined.[Results] ① TC and TN decreased with increasing soil depth, and the average contents of TC and TN were 35.47 g/kg and 2.41 g/kg, respectively. ② The contents of SOC, SWC, clay, and silt also decreased with increasing soil depth, and the contents of soil ρb, pH value, and sand increased. ③ Soil physical and chemical properties were related to each other and jointly affected soil carbon and nitrogen content. The direct interaction between soil carbon and nitrogen was significant. Soil ρb had a direct effect on soil TC. SWC had an indirect effect on soil TC by affecting soil TN. Soil silt and clay contents had a direct effect on soil TN. Soil pH value had an indirect effect on soil TN by affecting soil silt and clay contents.[Conclusion] Farmland soil on a southern slope of the Qilian Mountains was relatively fertile, and TN and organic matter content were at a high level that could provide sufficient soil nutrients for vegetation growth in the study area. Under the farming practices currently used, the increase in soil TN and SWC was conducive to the accumulation of soil TC content, and the increase of soil TC, clay, and SWC content was conducive to the accumulation of soil TN content.

    Reference
    [1] Van Groenigen K J, Qi Xuan, Osenberg C W, et al.Faster decomposition under increased atmospheric CO2 limits soil carbon storage[J].Science, 2014, 344(6183):508-509.
    [2] Post W M, Emanuel W R, Zinke P J, et al.Soil carbon pools and world life zones[J].Nature, 1982, 298(5870):156-159.
    [3] 王棣, 耿增超, 佘雕, 等.秦岭典型林分土壤有机碳储量及碳氮垂直分布[J].生态学报, 2015, 35(16):5421-5429.
    [4] 徐丽, 于贵瑞, 何念鹏.1980s-2010s中国陆地生态系统土壤碳储量的变化[J].地理学报, 2018, 73(11):2150-2167.
    [5] 高超.东祁连山不同退化程度高寒草甸草原土壤有机质特性及其对草地生产力的影响[D].甘肃兰州:甘肃农业大学, 2007.
    [6] 杨成德, 龙瑞军, 陈秀蓉, 等.东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征[J].草业学报, 2007, 16(4):62-68.
    [7] 申新山, 魏志玲, 向宇宸, 等.不同海拔梯度高寒草甸土基本理化指标及氮素的变化动态[J].中国水土保持, 2020(10):57-59.
    [8] 赵维俊, 刘贤德, 金铭, 等.祁连山青海云杉林叶片-枯落物-土壤的碳氮磷生态化学计量特征[J].土壤学报, 2016, 53(2):477-489.
    [9] 刘林馨, 王健, 杨晓杰, 等.大兴安岭不同森林群落植被多样性对土壤有机碳密度的影响[J].生态环境学报, 2018, 27(9):1610-1616.
    [10] 祖元刚, 李冉, 王文杰, 等.我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J].生态学报, 2011, 31(18):5207-5216.
    [11] 吴江琪, 马维伟, 李广, 等.黄土高原4种植被类型对土壤物理特征及渗透性的影响[J].水土保持学报, 2018, 32(4):133-138.
    [12] 何洪盛, 田青, 王理德, 等.青土湖退耕地植被群落特征与土壤理化性质分析[J].干旱区研究, 2021, 38(1):223-232.
    [13] 熊杏, 熊清华, 郭熙, 等.南方典型丘陵区耕地土壤全氮、有机碳和碳氮比空间变异特征及其影响因素[J].植物营养与肥料学报, 2020, 26(9):1656-1668.
    [14] 郭月峰, 祁伟, 姚云峰, 等.小流域梯田土壤有机碳与土壤物理性质的关系研究[J].生态环境学报, 2020, 29(4):748-756.
    [15] 张旭冉, 张卫青, 乌日查呼, 等.克氏针茅草原区有机碳与土壤理化性质的关系[J].干旱区资源与环境, 2020, 34(8):194-199.
    [16] 孟和, 郭月峰, 张美丽, 等.小流域梯田土壤有机碳含量及其固碳潜力[J].江苏农业科学, 2019, 47(4):237-241.
    [17] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社, 2000.
    [18] 闫玉春, 唐海萍, 张新时, 等.基于土壤粒度分析的草原风蚀特征探讨[J].中国沙漠, 2010, 30(6):1263-1268.
    [19] 袁杰, 曹生奎, 曹广超, 等.祁连山南坡不同植被类型土壤粒度特征[J].水土保持通报, 2019, 39(2):76-82.
    [20] 宋小园, 朱仲元, 刘艳伟, 等.通径分析在SPSS逐步线性回归中的实现[J].干旱区研究, 2016, 33(1):108-113.
    [21] 杨文辉, 李月梅, 韩燕.高寒区保护性耕作对油菜田土壤物理性状的影响[J].安徽农业科学, 2010, 38(35):20048-20049.
    [22] 傅华, 陈亚明, 王彦荣, 等.阿拉善主要草地类型土壤有机碳特征及其影响因素[J].生态学报, 2004, 24(3):469-476.
    [23] 全国土壤普查办公室.中国土壤普查数据[M].北京:中国农业出版社, 1997.
    [24] 马剑, 刘贤德, 李广, 等.祁连山中段青海云杉林土壤肥力质量评价研究[J].干旱区地理, 2019, 42(6):1368-1377.
    [25] 李龙, 姚云峰, 秦富仓.内蒙古赤峰梯田土壤有机碳含量分布特征及其影响因素[J].生态学杂志, 2014, 33(11):2930-2935.
    [26] 尤海舟, 毕君, 王超, 等.河北小五台山不同海拔白桦林土壤有机碳密度分布特征及影响因素[J].生态环境学报, 2018, 27(3):432-437.
    [27] 周启龙, 多吉顿珠, 陈少锋, 等.西藏北部不同草地类型土壤碳、氮、磷的变化特征[J].水土保持通报, 2019, 39(3):251-255.
    [28] 何金军, 魏江生, 左合君, 等.集宁-二连浩特铁路干线防护林土壤的理化特性[J].环境科学研究, 2008, 21(4):151-156.
    [29] 任书杰, 曹明奎, 陶波, 等.陆地生态系统氮状态对碳循环的限制作用研究进展[J].地理科学进展, 2006, 25(4):58-67.
    [30] Spain A V.Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils[J].Soil Research, 1990, 28(6):825.
    [31] Sollins P, Homann P, Caldwell B A.Stabilization and destabilization of soil organic matter:Mechanisms and controls[J].Geoderma, 1996, 74(1/2):65-105.
    [32] 刁二龙, 曹广超, 曹生奎, 等.祁连山南坡不同土地利用方式下土壤碳氮含量及通径分析[J].干旱区研究, 2021, 38(5):1346-1354.
    [33] 张少凤.锡林郭勒羊草草原不同利用方式下群落与土壤碳氮特征研究[D].内蒙古呼和浩特:内蒙古大学, 2018.
    [34] 韩磊, 庄涛, 周慧华, 等.小清河滨岸带土壤碳氮变化及影响因素研究[J].环境科学与技术, 2019, 42(6):28-34.
    [35] 朱凤武, 徐彩瑶, 濮励杰, 等.苏北滩涂围垦区土壤碳氮磷含量及其生态化学计量特征[J].中国土地科学, 2017, 31(12):77-83.
    [36] 刘永忠, 李齐霞, 孙万荣, 等.气候干旱与作物干旱指标体系[J].山西农业科学, 2005, 33(3):50-53.
    [37] 马渝欣, 李徐生, 李德成, 等.皖北平原蒙城县农田土壤有机碳空间变异及影响因素[J].土壤学报, 2014, 51(5):1153-1159.
    [38] 贾海霞, 汪霞, 李佳, 等.新疆焉耆盆地绿洲区农田土壤有机碳储量动态模拟[J].生态学报, 2019, 39(14):5106-5116.
    [39] Six J, Conant R T, Paul E A, et al.Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils[J].Plant and Soil, 2002, 241(2):155-176.
    [40] 元晓春, 林惠瑛, 曾泉鑫, 等.武夷山不同海拔梯度黄山松土壤有机氮解聚酶活性及其影响因素[J].生态学报, 2022, 42(4):1560-1570.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

邱巡巡,曹广超,曹生奎,张卓,程梦园,何启欣,高斯远,赵美亮.祁连山南坡农田土壤碳氮含量垂直分布特征及其影响因素[J].水土保持通报英文版,2022,42(3):366-372

Copy
Share
Article Metrics
  • Abstract:154
  • PDF: 676
  • HTML: 0
  • Cited by: 0
History
  • Received:December 27,2021
  • Revised:March 20,2022
  • Online: August 02,2022