Experimental Study on Microbial Mineralization Reinforcement and Erosion Resistance of Loess Slope Surface
Author:
Clc Number:

S157.1;S423+.9

  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The microbial mineralization reinforcement and erosion resistance of loess slope were studied in order to provide technology for the prevention and control of slope soil erosion in this region. [Methods] Microbial mineralization technology was used to reinforce a loess slope. The mechanism of microbially induced calcite precipitation (MICP) technology on the mineralization and reinforcement of a loess slope was determined from a microscopic point of view with the use of an optical microscope and a scanning electron microscope. Erosion resistance of the reinforced slope was analyzed combined with an indoor simulated rainfall test. [Results] The erosion resistance of a loess slope could be effectively improved by using microbial mineralization technology to solidify the loess slope. As curing times increased, the thickness of the cured layer gradually increased. The permeability of the slope gradually decreased, and the total production flow gradually increased from 38.5 to 44.4 L/h, with an increase ratio of 15.6%. At the same time, total sediment yield gradually decreased from 480.64 to 17.1 g/h, with a decrease of 96.5%. No obvious soil erosion occurred on the slope after seven solidification treatments and one hour of continuous scouring with a rainfall intensity of 120 mm/h. The runoff and sediment concentration on the slope hardly changed with increased rainfall duration, and were stable between 0.72 and 0.74 L/min and between 0.001 and 0.002 g/ml, respectively. When the number of curing treatments reached seven or more, the number of curing treatments had a significant effect on total sediment yield, and total sediment yield decreased with increasing number of curing treatments. [Conclusion] MICP technology provides a new method and technology for reinforcement of loess slopes in the loess hilly and gully region that will prevent and control soil erosion on temporary and permanent slopes. This technology would be certain to have practical applications.

    Reference
    [1] 刘慧,李振国,宋万增,等.边坡固结植生生态防护技术试验研究及应用[J].人民黄河,2020,42(9):151-154.
    [2] 曹永强,倪广恒,胡和平.水利水电工程建设对生态环境的影响分析[J].人民黄河,2005,27(1):56-58.
    [3] 裴向军,袁广,张晓超,等.坡脚开挖诱发滑坡机理: 以沙井驿滑坡为例[J].山地学报,2017,35(2):195-202.
    [4] 邱海军,崔鹏,胡胜,等.陕北黄土高原不同地貌类型区黄土滑坡频率分布[J].地球科学,2016,41(2):343-350.
    [5] Guo Zhonglu, Ma Meijing, Cai Chongfa, et al. Combined effects of simulated rainfall and overland flow on sediment and solute transport in hillslope erosion [J]. Journal of Soils and Sediments, 2018,18(3):1120-1132.
    [6] 刘冉,余新晓,蔡强国,等.黄土丘陵沟壑区黄土坡面侵蚀过程及其影响因素[J].应用生态学报,2021,32(8):2886-2894.
    [7] 赵宽耀,许强,亓星,等.甘肃黑方台黄土滑坡类型及其发育特征研究[J].人民长江,2016,47(14):46-50.
    [8] 许元珺,谷天峰,王家鼎,等.黄土裂隙的漫灌效应对斜坡稳定性的影响分析[J].水文地质工程地质,2017,44(4):153-159.
    [9] Çabalar A F. Discussion of “biological considerations in geotechnical engineering” by James K. Mitchell and J. Carlos santamarina [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007,133(4):485.
    [10] 崔明娟,郑俊杰,赖汉江.菌液注射方式对微生物固化砂土动力特性影响试验研究[J].岩土力学,2017,38(11):3173-3178.
    [11] 刘鹏,邵光辉,黄容聘.微生物沉积碳酸钙胶结砂土力学特性及本构模型[J].东南大学学报(自然科学版),2019,49(4):720-726.
    [12] 袁翔,滕伟福,俞伟,等.MICP技术对巴东组第三段软弱夹层土体的加固试验研究[J].安全与环境工程,2021,28(5):101-106.
    [13] 李驰,王硕,王燕星,等.沙漠微生物矿化覆膜及其稳定性的现场试验研究[J].岩土力学,2019,40(4):1291-1298.
    [14] 景天宇,姜晗琳,李振山.微生物诱导碳酸钙沉淀固结黄河泥沙试验研究[J].人民黄河,2019,41(11):11-16.
    [15] Bernardi D, DeJong J T, Montoya B M, et al. Bio-bricks: Biologically cemented sandstone bricks [J]. Construction and Building Materials, 2014,55:462-469.
    [16] 吴超传,郑俊杰,赖汉江,等.微生物固化砂土强度增长机理及影响因素试验研究[J].土木与环境工程学报(中英文),2020,42(1):31-38.
    [17] 张世参,骆亚生,田堪良,等.风积沙的微生物固化试验研究[J].人民黄河,2021,43(10):144-149.
    [18] 杨恒,陈筠,白文胜,等.活性炭固定微生物固化贵阳红黏土力学特性[J].中国岩溶,2019,38(4):619-626.
    [19] 王怀星.黄土的微生物固化及抗侵蚀性能试验研究[D].北京:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心),2021.
    [20] Abo-El-Enein S A, Ali A H, Talkhan F N, et al. Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation [J]. HBRC Journal, 2012,8(3):185-192.
    [21] 郑粉莉,赵军.人工模拟降雨大厅及模拟降雨设备简介[J].水土保持研究,2004,11(4):177-178.
    [22] 牛永振,李张楠,栾清华,等.不同坡面单元人工降雨产流试验与分析[J].科学技术与工程,2021,21(20):8389-8394.
    [23] 周凡凡,高建恩,王照润,等.坡面降雨径流侵蚀输沙的不平衡特性研究[J].水土保持学报,2021,35(6):95-100.
    [24] 付兴涛,王奇花,王锦志.降雨条件下晋西黄绵土坡面室内外径流侵蚀试验差异分析[J].农业工程学报,2021,37(1):116-124.
    [25] 胡乾亮.降雨对固化黄土边坡稳定性的影响[D].山西 太原:太原理工大学,2016.
    [26] 付兴涛,张丽萍.红壤丘陵区坡长对作物覆盖坡耕地土壤侵蚀的影响[J].农业工程学报,2014,30(5):91-98.
    [27] 张珊,杨树文,王恒亮.顾及黄土滑坡的兰州市不同等级降雨时空变化特征[J].水土保持研究,2019,26(1):184-191.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

段金贵,王怀星,姚姬璇,王昕宇,赵晓娟,白旭龙,田堪良.黄土坡面的微生物矿化加固及抗侵蚀性能试验研究[J].水土保持通报英文版,2022,42(5):33-40

Copy
Share
Article Metrics
  • Abstract:808
  • PDF: 751
  • HTML: 1013
  • Cited by: 0
History
  • Received:March 02,2022
  • Revised:March 29,2022
  • Online: November 22,2022