Evaluating on Effect of Conversion from Farmland to Forest and Grassland Porject on Ecosystem Carbon Storage in Loess Hilly-gully Region Based on InVEST Model
Author:
Clc Number:

X171.1

  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    [Objective] The impact of the project to convert farmland to forest and grassland on terrestrial ecosystem carbon storage in the loess hilly-gully region was quantitatively evaluated in order to provide a basis for regional ecological construction. [Methods] The GIS spatial analysis method and the InVEST model were used to study changes in land use and carbon storage in the loess hilly-gully region from 2000 to 2020. [Results] ① From 2000 to 2020, the conversion area of cultivated land to forest and grass land accounted for 20.75% and 86.56%, respectively, of the total conversion amount of cultivated land, and the coverage rate of forest and grassland increased by 1.76%. ② The conversion of farmland to forest significantly improved the carbon storage service in the loess hilly and gully region, and carbon storage increased from 8.22×108 t in 2000 to 8.26×108 t in 2020, and reached a peak of 8.35×108 t in 2010. ③ The increase in net carbon storage of the study area was more than offset the carbon loss, and the contribution rate of carbon storage returning forest and grassland was the largest, which was 38.82% and 22.58%, respectively. [Conclusion] Implementing the project of returning farmland to forest and grassland has had a significant positive effect on the carbon storage of the regional ecosystem. Forest and grassland construction can enhance ecosystem carbon storage services. Future research should focus on the carbon sequestration contribution of ecological restoration projects, the scientific management of forest and grass vegetation, and improving regional ecosystem services.

    Reference
    [1] Canadell J G, Raupach M R. Managing forests for climate change mitigation [J]. Science, 2008, 320(5882):1456-1457.
    [2] Aminu M D, Nabavi S A, Rochelle C A, et al. A review of developments in carbon dioxide storage [J]. Applied Energy, 2017,208:1389-1419.
    [3] 戴尔阜,黄宇,吴卓,等.内蒙古草地生态系统碳源/汇时空格局及其与气候因子的关系[J].地理学报,2016,71(1):21-34.
    [4] 张凯琪,陈建军,侯建坤,等.耦合InVEST与GeoSOS-FLUS模型的桂林市碳储可持续发展研究[J].中国环境科学,2022,42(6):2799-2809.
    [5] Deng Lei, Liu Guobin, Shangguan Zhouping. Land-use conversion and changing soil carbon stocks in China’s 'Grain-for-Green’ Program: A synthesis [J]. Global Change Biology, 2014,20(11):3544-3556.
    [6] Chen Chi, Park T, Wang Xuhui, et al. China and India lead in greening of the world through land-use management [J]. Nature Sustainability, 2019,2(2):122-129.
    [7] 张云倩,张晓祥,陈振杰,等.基于InVEST模型的江苏海岸带生态系统碳储量时空变化研究[J].水土保持研究,2016,23(3):100-105.
    [8] 揣小伟,黄贤金,郑泽庆,等.江苏省土地利用变化对陆地生态系统碳储量的影响[J].资源科学,2011,33(10):1932-1939.
    [9] 刘晓娟,黎夏,梁迅,等.基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J].热带地理,2019,39(3):397-409.
    [10] 方精云,陈安平,赵淑清,等.中国森林生物量的估算: 对Fang等Science一文(Science,2001,291:2320-2322)的若干说明[J].植物生态学报,2002,26(2):243-249.
    [11] Oubrahim H, Boulmane M, Bakker M R, et al. Carbon storage in degraded cork oak (Quercus suber) forests on flat Lowlands in Morocco [J]. Forest-Biogeosciences and Forestry, 2016,9(1):125-137.
    [12] 张景群,苏印泉,康永祥,等.黄土高原刺槐人工林幼林生态系统碳吸存[J].应用生态学报,2009,20(12):2911-2916.
    [13] 柳梅英,包安明,陈曦,等.近30年玛纳斯河流域土地利用/覆被变化对植被碳储量的影响[J].自然资源学报,2010,25(6):926-938.
    [14] Nelson E, Mendoza G, Regetz J, et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales [J]. Frontiers in Ecology and the Environment, 2009,7(1):4-11.
    [15] Leh M D K, Matlock M D, Cummings E C, et al. Quantifying and mapping multiple ecosystem services change in West Africa [J]. Agriculture, Ecosystems & Environment, 2013,165:6-18.
    [16] Wang Jinzhu, Zhang Qian, Gou Taoji, et al. Spatial-temporal changes of urban areas and terrestrial carbon storage in the Three Gorges Reservoir in China [J]. Ecological Indicators, 2018,95:343-352.
    [17] 张文华,贾志斌,卓义,等.InVEST模型对锡林郭勒草原碳储量研究的适用性分析[J].地球环境学报,2016,7(1):87-96.
    [18] 王渊刚,罗格平,冯异星,等.近50 a玛纳斯河流域土地利用/覆被变化对碳储量的影响[J].自然资源学报,2013,28(6):994-1006.
    [19] 徐自为,张智杰.基于土地利用变更调查的2010—2016年新疆尉犁县生态系统碳储量时空变化[J].环境科学研究,2018,31(11):1909-1917.
    [20] 赫晓慧,徐雅婷,范学峰,等.中原城市群区域碳储量的时空变化和预测研究[J].中国环境科学,2022,42(6):2965-2976.
    [21] 朱志强,马晓双,胡洪.基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J].水土保持通报,2021,41(2):222-229.
    [22] 刘彦随,冯巍仑,李裕瑞.现代农业地理工程与农业高质量发展: 以黄土丘陵沟壑区为例[J].地理学报,2020,75(10):2029-2046.
    [23] 李晶,任志远.陕北黄土高原生态系统涵养水源价值的时空变化[J].生态学杂志,2008,27(2):240-244.
    [24] Liu Jiyuan, Liu Mingliang, Zhuang Dafang, et al. Study on spatial pattern of land-use change in China during 1995—2000 [J]. Science in China (Earth Science), 2003,46(4):373-384.
    [25] 刘纪远.中国资源环境遥感宏观调查与动态研究[M].北京:中国科学技术出版社,1996.
    [26] 刘纪远,宁佳,匡文慧,等.2010—2015年中国土地利用变化的时空格局与新特征[J].地理学报,2018,73(5):789-802.
    [27] 朱会义,李秀彬.关于区域土地利用变化指数模型方法的讨论[J].地理学报,2003,58(5):643-650.
    [28] 程积民,程杰,杨晓梅.黄土高原草地植被与土壤固碳量研究[J].自然资源学报,2011,26(3):401-411.
    [29] 程积民,程杰,杨晓梅,等.黄土高原草地植被碳密度的空间分布特征[J].生态学报,2012,32(1):226-237.
    [30] 高阳.黄土高原地区林草生态系统碳密度和碳储量研究[D].陕西 杨凌:西北农林科技大学,2014.
    [31] Wen Wen, Zhou Baotong, Wang Yafeng, et al. Effects of spatio-temporal changes of land-use on soil organic carbon in Yangjuangou watershed in Loess Plateau, China [J]. Acta Ecologica Sinica, 2015,35(18):6060-6069.
    [32] Li Kongming, Cao Jianjun, Adamowski J F, et al. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China [J]. Environmental Development, 2021,39:100641.
    [33] 曹扬,陈云明,晋蓓,等.陕西省森林植被碳储量、碳密度及其空间分布格局[J].干旱区资源与环境,2014,28(9):69-73.
    [34] 马琪,刘康,张慧.陕西省森林植被碳储量及其空间分布[J].资源科学,2012,34(9):1781-1789.
    [35] 米楠,卜晓燕,米文宝.宁夏旱区湿地生态系统碳汇功能研究[J].干旱区资源与环境,2013,27(7):52-55.
    [36] 罗怀良.中国农田作物植被碳储量研究进展[J].生态环境学报,2014,23(4):692-697.
    [37] 王静,冯永忠,杨改河,等.山西农田生态系统碳源/汇时空差异分析[J].西北农林科技大学学报(自然科学版),2010,38(1):195-200.
    [38] Zhu Enyan, Deng Jingsong, Zhou Mengmeng, et al. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China [J]. Science of the Total Environment, 2019,646:930-939.
    [39] 包玉斌.陕北黄土高原退耕还林还草工程固碳效应研究[J].安徽农业科学,2021,49(17):55-60.
    [40] 邓元杰,姚顺波,侯孟阳,等.退耕还林还草工程对生态系统碳储存服务的影响:以黄土高原丘陵沟壑区子长县为例[J].自然资源学报,2020,35(4):826-844.
    [41] 张影,谢余初,齐姗姗,等.基于InVEST模型的甘肃白龙江流域生态系统碳储量及空间格局特征[J].资源科学,2016,38(8):1585-1593.
    [42] Zhou Junju, Zhao Yaru, Huang Peng, et al. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China [J]. Ecological Indicators, 2020,118:106803.
    [43] 朱文博,张静静,崔耀平,等.基于土地利用变化情景的生态系统碳储量评估:以太行山淇河流域为例[J].地理学报,2019,74(3):446-459.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

姚楠,刘广全,姚顺波,邓元杰,侯孟阳,张晓.基于InVEST模型的黄土丘陵沟壑区退耕还林还草工程对生态系统碳储量的影响评估[J].水土保持通报英文版,2022,42(5):329-336

Copy
Share
Article Metrics
  • Abstract:893
  • PDF: 823
  • HTML: 1089
  • Cited by: 0
History
  • Received:February 28,2022
  • Revised:May 02,2022
  • Online: November 22,2022