Spatial-temporal Evolution Characteristics and Influencing Factors of Carbon Emissions in Yunnan Province Based on Land Use Changes
  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Objective] The temporal and spatial variation of carbon emissions due to land use changes and the factors influencing carbon emissions in Yunnan Province were analyzed in order to provide a theoretical basis for optimizing land use structure and achieving the low-carbon development goal in Yunnan Province. [Methods] Carbon emissions for Yunnan Province were calculated based on land use and fossil energy consumption data in Yunnan Province in 2005, 2010, 2015, and 2020. Spatial visualization and spatial autocorrelation were used to study the temporal and spatial variation and spatial agglomeration characteristics of carbon emissions in the past 15 years. The influencing factors were analyzed by geographical detectors. [Results] (1) From 2005 to 2020, the area of construction land in Yunnan Province increased the most, with a dynamic change of 7.90%. (2) Regional net carbon emissions increased rapidly, with an annual increase of 6.5%. The spatial pattern of carbon emissions was characterized as "high in the central region and low in the surrounding area". The carbon footprint increased significantly during the study period, and the carbon ecological carrying capacity was relatively stable, resulting in an increasing carbon ecological deficit. (3) Population size, economic level, industrial structure, land use, etc. promoted the increase in carbon emissions for cities and counties around Yunnan Province. [Conclusion] Measures should be taken in the future to protect or reasonably increase the area of carbon sinks (such as forest land) and to strengthen dynamic monitoring, control the area of construction land and total energy consumption, explore the carbon compensation mechanism, and employ the radiation effect of carbon sink areas.

    Reference
    [1] 王少剑, 高爽, 黄永源, 等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报, 2020(6): 1316?1330.
    [2] 黄贤金, 张秀英, 卢学鹤, 等. 面向碳中和的中国低碳国土开发利用[J]. 自然资源学报, 2021, 36(12): 2995?3006.
    [3] IPCC. Climate change2000, land use, land use change and forestry, A special report of the IPCC[M].Cambridge University Press, 2000.
    [4] 吕江. 应对气候变化与生物多样性保护的国际规则协同: 演进、挑战与中国选择[J]. 北京理工大学学报(社会科学版), 2022, 24(02): 50?60.
    [5] 付琳, 周泽宇, 杨秀. 适应气候变化政策机制的国际经验与启示[J]. 气候变化研究进展, 2020, 16(05): 641?651.
    [6] 葛全胜, 戴君虎, 何凡能, 等. 过去300年中国土地利用、土地覆被变化与碳循环研究[J]. 中国科学(D辑: 地球科学), 2008, 38(2): 197?210.
    [7] 赖力. 中国土地利用的碳排放效应研究[D].南京大学, 2010. [1,2].
    [8] SU MR, PAULEIT S, YIN X M, et al. Greenhouse gas emission accounting for EU member states from 1991 to 2012. Applied Energy, 2016, 184: 759?768.
    [9] SOHL T L, SLEETER B M, ZHU Z L, et al. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes. Applied Geography, 2012, 34: 111?124.
    [10] 张秀梅, 李升峰, 黄贤金, 等. 江苏省1996年至2007年碳排放效应及时空格局分析[J]. 资源科学, 2010, 32(4): 768?775.
    [11] 严志翰, 任丽燕, 刘永强, 等. 浙江省碳排放时空格局及影响因素研究[J]. 长江流域资源与环境, 2017, 26(09): 1427-1435.
    [12] 魏燕茹, 陈松林. 福建省土地利用碳排放空间关联性与碳平衡分区[J]. 生态学报, 2021, 41(14): 5814?5824.
    [13] 舒心, 夏楚瑜, 李艳, 等.长三角城市群碳排放与城市用地增长及形态的关系[J]. 生态学报, 2018, 38(17): 6302-6313.
    [14] 夏四友, 杨宇. 基于主体功能区的京津冀城市群碳收支时空分异与碳补偿分区[J]. 地理学报, 2022, 77(03): 679-696.
    [15] MARCHI M, JORGENSEN S E, PULSELLI F M, et al. Modelling the carbon cycle of Siena Province (Tuscany,central Italy). Ecological Modeling, 2012, 225: 40?60.
    [16] LIU J X, VOGELMANN J E, ZHU Z L, et al. Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951?2000. Ecological Modelling, 2011, 222(14): 2333?2341.
    [17] 蓝家程, 傅瓦利, 袁波, 等. 重庆市不同土地利用碳排放及碳足迹分析[J]. 水土保持学报, 2012, 26(01): 146-150+155.
    [18] JO H K. Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management, 2002 ,64(2): 115-126.
    [19] 易丹,欧名豪,郭杰,等.土地利用碳排放及低碳优化研究进展与趋势展望[J].资源科学,2022,44(08):1545-1559.
    [20] 方精云, 郭兆迪, 朴世龙, 等. 1981?2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑: 地球科学), 2007, 37(6): 804?812.
    [21] 肖红艳,袁兴中, 李波, 等. 土地利用变化碳排放效应研究: 以重庆市为例[J]. 重庆师范大学学报: 自然科学版, 2012, 29(1): 38?42.
    [22] 胡梦姗, 叶长盛, 董倩, 等. 长江中游省会城市碳足迹深度时空演变及其影响因素[J/OL]. 环境科学研究: 1?15[2022?07?29]
    [23] 李彦旻, 沈育生, 王世航. 基于土地利用变化的安徽省陆地碳排放时空特征及效应[J]. 水土保持学报, 2022, 36(01): 182?188.
    [24] 彭文甫, 周介铭, 徐新良, 等.基于土地利用变化的四川省碳排放与碳足迹效应及时空格局[J].生态学报,2016,36(22):7244-7259.
    [25] 刘畅, 祁毅, 姚红, 等. 新时代背景下生态承载力研究要义与优化对策探讨[J]. 生态经济, 2020, 36(06): 173-180.
    [26] 罗芳, 艾廷华, 贾小斌. 空间自相关支撑下的地类分布模式一致性评价[J/OL].武汉大学学报(信息科学版): 1?9[2022?03?25].
    [27] 张雪华, 董会忠. “2+26”城市碳排放时空演变特征及其驱动因素研究[J]. 资源开发与市场, 2021, 37(12): 1448?1456.
    [28] 许锋. 基于Moran指数和谱图论的空间自相关测度方法优化[J]. 城市发展研究, 2021, 28(12): 92?101+41.
    [29] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(01): 116?134.
    [30] 吾买尔艾力·艾买提卡力, 阿巴拜克热·艾买提卡力, 范昕, 等. 2000—2018年环鄱阳湖生态城市群碳排放时空分异规律及影响因素分析[J]. 生态经济, 2021, 37(06): 51-57+86.
    [31] 王少剑, 田莎莎, 蔡清楠, 等. 产业转移背景下广东省工业碳排放的驱动因素及碳转移分析[J].地理研究, 2021, 40(09): 2606?2622. [1].
    [32] 马远, 刘真真. 黄河流域土地利用碳排放的时空演变及影响因素研究[J]. 生态经济, 2021, 37(07): 35-43.
    [33] 狄乾斌, 侯智文, 陈小龙. 基于夜间灯光数据的中国海岛县碳排放时空分异及影响因素研究[J]. 地理与地理信息科学, 2022, 38(06): 23-28.
    [34] 吴健生, 晋雪茹, 王晗, 等.中国碳排放及影响因素的市域尺度分析[J/OL]. 环境科学: 1-13.2022.
    [35] 柯楠, 卢新海, 匡兵. 中国城市土地绿色低碳利用时空演化及影响因素——基于碳中和目标的实证研究[J]. 城市问题, 2021(07): 33-40.
    [36] 张赫, 彭千芮, 王睿, 等. 中国县域碳汇时空格局及影响因素[J]. 生态学报,2020.40(24):8988-8998.
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 13,2023
  • Revised:March 31,2023
  • Adopted:April 03,2023
  • Online: November 09,2023