Spatiotemporal Characteristics of Carbon Storage and its Response to Land Use Changes in Fujian Province
  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • | | | |
  • Comments
    Abstract:

    [Objective] The ecosystem carbon storage and its response to land use changes in Fujian Province were analysed in order to provide a reference for ecosystem protection. [Methods] Based on land use data and carbon density data, the InVEST model was used to simulate carbon storage in Fujian Province in 1980, 2000, and 2020. The spatiotemporal characteristics of carbon storage and land use were analyzed using the distribution of cold spots and hot spots, transfer maps, and a transfer matrix. The response of carbon storage to land use changes was analyzed. [Results] (1) Carbon storage in Fujian Province was relatively high on the whole, and more than 82.5% of the region was above medium carbon storage (>3000 t), mainly located in mountainous and hilly areas, which were also hot spots of high carbon storage. Ares of high (hot spots) and low (cold spots) of carbon storage concentration transferred less. Total carbon storage fluctuated slightly from 1980 to 2020, and relatively more carbon storage transferred between different carbon storage levels from 2000 to 2020. (2) Land use/cover in Fujian Province was mainly forest land (61.4%–62.9%), followed by cultivated land (16.9%–18.3%) and grassland (15.2%–17.2%). Land use/cover change was relatively stable from 1980 to 2000, and more intense from 2000 to 2020. (3) Total carbon storage values in forest land, grassland, and cultivated land were relatively high, while total carbon storage in water bodies, construction land, and unused land were relatively low. Total carbon storage in cultivated land decreased over time, while total carbon storage of construction land increased. The area of forest land and grassland both increased and decreased. The largest transfer of total carbon storage caused by land use/cover changes was observed in forest land, followed by grassland and cultivated land. The net transfer of total carbon storage was negative for forest land, and positive for the other land use classes. The largest carbon loss was observed for the transfer of forest land. [Conclusion] Cultivated land, forest land, and grassland were the main types of land use in Fujian Province contributing to higher carbon storage, and their mutual transfer resulted in carbon storage changes.

    Reference
    [1] 陈慧敏, 赵宇, 付晓, 等. 西辽河上游生境质量时空演变特征与影响机制研究[J]. 生态学报, 2023, 43(3).
    [2] 冀泳帆, 贾鲁净, 杨联安, 等. 耦合InVEST-PLUS模型的榆林市生境质量时空演变及预测分析[J].水土保持学报, 2023, 37(1).
    [3] Wang Xiaojun, Liu Guangxu, Lin Durui, et al. Water yield service influence by climate and land use change based on InVEST model in the monsoon hilly watershed in South China. Geomatics Natural Hazards and Risk, 2022, 13(1): 2024-2048.
    [4] 王辉源, 宋进喜, 吴琼.气候变化背景下秦岭水源涵养功能时空变异特征[J]. 水土保持学报, 2022, 36(5): 212-219.
    [5] 韩晶, 崔金芳, 杨威, 等. 基于InVEST模型的低山丘陵区土壤侵蚀变化与驱动因素分析[J]. 水土保持研究, 2022, 29(5): 32-39.
    [6] 廖雯, 胡砚霞, 于兴修, 等. 丹江口库区2010-2020年土壤保持功能时空特征及其影响因素[J]. 水土保持通报, 2021, 41(6): 288-294+376.
    [7] 段璇瑜, 龚文峰, 孙雨欣, 等. 海南岛海岸带土地利用变化及其对碳储量时空演变的影响[J]. 水土保持通报, 2022, 42(5): 301-311.
    [8] 韩敏, 徐长春, 隆云霞, 等. 西北干旱区不同土地利用情景下的碳储量及碳源/汇变化模拟与预估[J]. 水土保持通报, 2022, 42(3): 335-344.
    [9] Sharp R, Tallis H T, Ricketts T, et al. InVEST 3.2.0 User‘s Guide [OL]. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2015. https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/index.html
    [10] 孙欣欣, 薛建辉, 董丽娜. 基于PLUS模型和InVEST模型的南京市生态系统碳储量时空变化与预测[J]. 生态与农村环境学报, 2023, 39(1): 41-51.
    [11] 张育诚, 韩念龙, 胡珂, 等. 海南岛中部山区土地利用变化对碳储量时空分异的影响[J]. 南京林业大学学报(自然科学版), 2022. http://kns.cnki.net/kcms/detail/32.1161.s.20221024.1922.005.html.
    [12] 林彤, 杨木壮, 吴大放, 等. 基于InVEST-PLUS模型的碳储量空间关联性及预测——以广东省为例[J]. 中国环境科学, 2022, 42(10): 4827-4839.
    [13] 李姣, 汪杰, 李朗, 等. 洞庭湖生态经济区土地利用变化对碳储量的影响[J]. 生态学杂志, 2022, 41(6): 1156-1165.
    [14] 丁岳, 王柳柱, 桂峰, 等. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学, 2022. https://doi.org/10.3227/j.hjkx.202204080.
    [15] 魏玺, 邵亚, 蔡湘文, 等. 漓江流域陆地生态系统碳储量时空特征与预测[J]. 环境工程技术学报, 2022. http://kns.cnki.net/kcms/detail/11.5972.X.20220726.1643.002.html.
    [16] 赵胤程, 覃盟琳, 庞雅月, 等. 基于FLUS-InVEST模型的北部湾城市群生态空间碳汇演变模拟及驱动因素研究[J]. 水土保持通报, 2022, 42(3): 345-355.
    [17] 王小军, 张楚然, 廖倚凌, 等. 1980–2018年粤港澳大湾区人为干扰度的时空特征[J]. 水土保持通报, 2021, 41(3): 333-341.
    [18] Wang Xiaojun, Zhong Wei, Li Tianhang, et al. A 16.2-kyr lacustrine sediment record of mercury deposition in Dahu Swamp, eastern Nanling Mountains, southern China: Analysis of implications for climatic changes[J]. Quaternary International, 2021(592): 12-21.
    [19] 苏开敏. 基于GIS技术的福建省茶树用地适宜性评价及其区划[D]. 福州: 福建农林大学, 2008.
    [20] 王小军, 刘光旭, 王炳香, 等. 基于气候因子的油茶含油率时空特征与种植分区研究[J]. 云南大学学报(自然科学版), 2020, 42(6): 1202-1211.
    [21] 王小军, 刘光旭, 肖彤. 气候变化情景下油茶生长的适宜性特征[J]. 热带地理, 2020, 40(5), 868-880.
    [22] 方精云, 黄耀, 朱江玲, 等. 森林生态系统碳收支及其影响机制[J]. 中国基础科学, 2015, 17(3): 20-25.
    [23] 张鹏,李良涛,苏玉姣,等.基于PLUS和InVEST模型的邯郸市碳储量空间分布特征研究[J].水土保持通报, 2023.DOI:10.13961/j.cnki.stbctb.20230111.01.
    [24] Liu Guangxu, Xiang Aicun, Huang Yimin, et al. Landscape changes and optimization in an ecological red line area: a case study in the Upper Reaches of the Ganjiang River[J]. International Journal of Environmental Research and Public Health, 2022, 19(18): 11530.
    [25] Wang Xiaojun, Liu Guangxu, Xiang Aicun, et al. Terrain gradient response of landscape ecological environment to land use and land cover change in the hilly watershed in South China[J]. Ecological Indicators, 2023(146): 109797.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:624
  • PDF: 477
  • HTML: 0
  • Cited by: 0
History
  • Received:February 02,2023
  • Revised:May 16,2023
  • Adopted:May 16,2023
  • Online: November 09,2023