Experimental Study on Water Retention Properties of Microbially Stabilized Aeolian Sand Soil
Author:
Clc Number:

S157.2

  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The performance of microbial induced calcium carbonate precipitation (MICP) to stabilize aeolian sand soil was studied in order to providing a theoretical basis for MICP technology in stabilize aeolian sand soil and restoring ecology. [Methods] The microstructure of aeolian sand soil was analyzed by use of scanning electron microscopy and optical microscopy on an aeolian sand soil stabilized with MICP. The test analyzed the basic physical properties and water retention of stabilized specimens. [Results] The aeolian sand soil treated with MICP had calcium carbonate crystals generated between the aeolian sand particles that cemented the sand particles together and solidified the loose aeolian sand into a whole with a certain strength. As curing time increased, the thickness, dry density, and calcium carbonate content of cured aeolian sand gradually increased, the permeability coefficient gradually decreased, the stabilized thickness increased from 3.38 mm to 11.28 mm, the dry density increased from 1.61 g/cm3 for the original sand to 2.05 g/cm3, the calcium carbonate content increased from 8.99% to 13.08%, and the permeability coefficient decreased from 1.06×10-3 cm/s for the original sand to 2.35×10-4 cm/s. When the number of curing treatments was not more than five times, the water retention rate increased with increasing number of curing treatments, and the water retention of the stabilized specimen increased. After more than five curing treatments, water retention decreased. [Conclusion] Aeolian sand soil stabilized by MICP technology can significantly improve the physical and mechanical properties and water retention of aeolian sand soil. Considering this stabilizing effect, water retention, and economics, the best stabilizing treatment time is three times. Thus, we can effectively prevent wind erosion, maintain soil moisture, and facilitate ecological restoration.

    Reference
    [1] Yuanyuan Z, Jianguo W, Chunyang H, et al. Linking wind erosion to ecosystem services in drylands: A landscape ecological approach [J]. Landscape Ecology, 2017,32(12):2399-2417.
    [2] Wang Tao, Zhu Zhenda, Wu Wei. Sandy desertification in the north of China[J]. Science in China (Series D: Earth Sciences), 2002,45(1):23-34.
    [3] 韩梅,邬晗,韩柏,等.鄂尔多斯地区毛乌素沙地荒漠化形成因素及治理措施[J].农业与技术,2021,41(18):111-115.
    [4] 杭利军,童淑敏.浅论干旱、半干旱地区土壤风蚀发生机理及防治措施[J].内蒙古林业科技,2003(2):49-50.
    [5] Wang T. Aeolian desertification and its control in Northern China [J]. International Soil and Water Conservation Research, 2014,2(4):34-41.
    [6] 吴波,慈龙骏.五十年代以来毛乌素沙地荒漠化扩展及其原因[J].第四纪研究,1998(2):165-172.
    [7] 顿耀权,屈建军,康文岩,等.包兰铁路沙坡头段防护体系研究综述[J].中国沙漠,2021,41(3):66-74.
    [8] 邓友生,彭程谱,刘俊聪,等.沙漠公路灾害防治方法及其工程应用[J].公路,2021,66(6):345-351.
    [9] 居炎飞,邱明喜,朱纪康,等.我国固沙材料研究进展与应用前景[J].干旱区资源与环境,2019,33(10):138-144.
    [10] 李元元,王占礼.聚丙烯酰胺(PAM)防治土壤风蚀的研究进展[J].应用生态学报,2016,27(3):1002-1008.
    [11] 唐艳,刘连友,屈志强,等.植物阻沙能力研究进展[J].中国沙漠,2011,31(1):43-48.
    [12] Victoria S W, Leon A V P, Marien P H. Microbial carbonate precipitation as a soil improvement technique [J]. Geomicrobiology Journal, 2007,24(5):417-423.
    [13] 彭劼,冯清鹏,孙益成.温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J].岩土工程学报,2018,40(6):1048-1055.
    [14] Fahmi A, Katebi H, Hajialilue B M, et al. Microbial sand stabilization using corn steep liquor culture media and industrial calcium reagents in cementation solutions [J]. Industrial Biotechnology, 2018,14(5):270-275.
    [15] Gowthaman S, Chen M, Nakashima K, et al. Effect of Scallop powder addition on micp treatment of amorphous peat [J]. Frontiers in Environmental Science, 2021,9(6):1-13.
    [16] 中华人民共和国水利部. GB/T50123-2019土工试验方法标准[S].北京:中国计划出版社,2019.
    [17] 吴雨瑶.风沙土的微生物固化及其抗风蚀试验研究[D].陕西 杨凌:西北农林科技大学,2018.
    [18] Kanliang T, Yuyao W, Huili Z, et al. Increasing wind erosion resistance of aeolian sandy soil by microbially induced calcium carbonate precipitation [J]. Land Degradation & Development, 2018,29(12):4271-4281.
    [19] 彭新华,张斌,李江涛,等.对多孔介质物体孔隙度—蜡封法改进的探讨:以土壤团聚体为例[J].土壤通报,2003,34(1):19-20.
    [20] 宫辛玲,高军侠,尹光华,等.4种不同类型土壤保水剂保水性能的比较[J].生态学杂志,2008,27(4):652-656.
    [21] 汪亚峰,李茂松,宋吉青,等.保水剂对土壤体积膨胀率及土壤团聚体影响研究[J].土壤通报,2009,40(5):1022-1025.
    [22] 李多.微生物诱导碳酸钙沉淀固化沙漠风积砂的研究[D].陕西 杨凌:西北农林科技大学,2018.
    [23] 陈利轩.碳酸钙改性高吸水树脂的合成及其性能研究[D].甘肃 兰州:兰州交通大学,2014.
    [24] 李涛,高颖,张嘉睿,等.陕北保水采煤背景下MICP再造隔水土层的试验研究[J].煤炭学报,2021,46(9):2984-2994.
    [25] 刘小军,郜鑫,潘超钒. MICP固化土遗址裂隙的剪切强度试验研究[J].土木工程学报,2022,55(4):88-94.
    [26] 支永艳 ,邓华锋,肖瑶,等. 微生物灌浆加固裂隙岩体的渗流特性分析[J].岩土力学,2019,(A01):237-244.
    [27] Zhang Junke, Su Peidong, Li Lin. Bioremediation of stainless steel pickling sludge through microbially induced carbonate precipitation [J]. Chemosphere, 2022,298:1-8.
    [28] 王维大,秦思远,肖宇,等.不同钙源对MICP固化氰化尾渣的影响[J].有色金属(冶炼部分),2022(7):131-137.
    [29] 葛鑫.不同灌浆方式对MICP固化沙漠风积沙的影响研究[D].江苏 南京:东南大学,2021.
    [30] 王瑞,泮晓华,唐朝生,等. MICP联合纤维加筋改性钙质砂的动力特性研究[J].岩土力学,2022,43(10):2643-2654.
    [31] 林泓民,卫仁杰,李亮亮,等.黄原胶改进MICP加固效果的试验研究[J].河南科学,2022,40(4):618-627.
    [32] 王怀星.黄土的微生物固化及抗侵蚀性能试验研究[D].北京:中国科学院大学,2021.
    [33] 张世参,骆亚生,田堪良,等.风积沙的微生物固化试验研究[J].人民黄河,2021,43(10):144-149.
    [34] 陶玲,杨欣,吕莹,等.凹凸棒基高分子固沙材料的表征及性能研究[J].硅酸盐通报,2018,37(2):547-552.
    [35] 陶艳,苏冰琴,张弛,等. CMC-g-AA对掺污泥泡沫混凝土吸水保水性能的影响[J].现代化工,2020,40(S1):151-156.
    [36] 渠永平,张增志.十六烷基三甲基氯化铵改性黏土固沙保水性能[J].农业工程学报,2020,36(13):109-115.
    [37] 姜雄,铁生年.添加剂对石膏基固沙材料保水性能的影响[J].硅酸盐通报,2014,33(6):1303-1308.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

姚姬璇,吴雨瑶,陈卓,段金贵,赵晓娟,田堪良.微生物固化风沙土的保水性能试验研究[J].水土保持通报英文版,2023,43(2):104-112,128

Copy
Share
Article Metrics
  • Abstract:882
  • PDF: 848
  • HTML: 1286
  • Cited by: 0
History
  • Received:July 21,2022
  • Revised:August 31,2022
  • Online: June 01,2023