Spatial-temporal Evolution Characteristics of Land Use Carbon Emissions in Ningxia
  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • | | | |
  • Comments
    Abstract:

    [Objective] Land use change is one of the important driving forces for increasing carbon emissions the deteriorate environmental quality. The temporal and spatial pattern changes and effects of land use carbon emissions were analyzed in order to provide a theoretical basis for the formulation of low-carbon development strategies. [Methods] The internal relationships between land use changes and carbon emissions, carbon emission intensity, and ecological effect were determined based on gray theory and ecological carrying coefficient by using land use and energy consumption data for 22 counties in Ningxia Hui Autonomous Region from 1980 to 2020. [Results] (1) There was a close correlation between carbon emission changes and land use changes. The correlation between construction land and carbon emissions was the largest (0.95). (2) Net carbon emissions of land use types in Ningxia increased by 5.24×107 t and had a growth rate of 625.43% from 1980 to 2020. This pattern was associated with significant increases in construction land area and carbon emissions (average annual rates of 4.42% and 2385.85%, respectively) during the period of 1980–2020. Additionally, grassland area decreased by 2.95?105 hm2, and the carbon sink decreased by 5.80?104 t. Forest land was the main carbon sink, accounting for more than 75% of the carbon sink in 2020, and increased with increasing area. (3) The carbon emission intensity of land use in Ningxia increased at an average annual rate of 0.25 t/hm2 from 1980 to 2020, and the coverage area of moderate and above grades increased gradually. A spatial distribution pattern of carbon emission intensity for cities along the Yellow River developed that was higher than observed for the central and southern regions. (4) Due to differences in county economic level and natural environment, the spatial differences in ecological support coefficients of carbon emissions for the 22 counties in Ningxia Hui Autonomous Region was obvious, and the distribution pattern of carbon sink capacity was weak in the north and strong in the south. [Conclusion] The carbon emission intensity of land use in Ningxia Hui Autonomous Region gradually increased from 1980 to 2020. The carbon ecological capacity of counties along the Yellow River in the north gradually decreased. The carbon ecological capacity of counties in the central and southern regions increased, but the pressure of emission reduction was greater. We recommend optimizing the spatial pattern of construction land, improving soil structure, increasing the area of mixed forests, and enhancing forest carbon sink capacity.

    Reference
    [1] 李彦旻, 沈育生, 王世航. 基于土地利用变化的安徽省陆地碳排放时空特征及效应[J]. 水土保持学报, 2022, 36(1): 182-188.
    [2] 易丹, 欧名豪, 郭杰, 等. 土地利用碳排放及低碳优化研究进展与趋势展望[J]. 资源科学, 2022, 44(8): 1545-1559.
    [3] 於冉, 黄贤金. 碳排放峰值控制下的建设用地扩展规模研究[J]. 中国人口·资源与环境, 2019, 29(7): 66-72.
    [4] Yang H, Huang J L, Liu D F. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage[J]. Applied Geography, 2020, 115(1): 102-135.
    [5] Han, X. Zhou, W.N. Xiang. Progress in research on land use effects on carbon emissions and low carbon managemet[J]. Acta Ecol. Sin.2016, 36(4): 1152-1161.
    [6] Shiqi Tian, Shijie Wang, Xiaoyong Bai, et al. Global patterns and changes of carbon emissions from land use during 1992–2015[J]. Environmental Science and Ecotechnology, 2021, (7): 1-12.
    [7] 第六次评估报告第三工作组报告[N/OL], 中国气象报, 2022-4-6(001).
    [8] 丁学谦, 吴群, 刘向南, 等. 土地利用、经济高质量发展与碳排放耦合协调度及影响因素: 来自中国282个地级市的经验研究[J]. 资源科学, 2022, 44(11): 2233-2246.
    [9] 汪菲, 王长建. 新疆能源消费碳排放的多变量驱动因素分析——基于扩展的STIRPAT模型[J]. 干旱区地理, 2017, 40(2): 441-452.
    [10] 牛亚文, 赵先超, 胡艺觉. 基于NPP-VIIRS夜间灯光的长株潭地区县域土地利用碳排放空间分异研究[J]. 环境科学学报, 2021, 41(9): 3847-3856.
    [11] 马远, 刘真真. 黄河流域土地利用碳排放的时空演变及影响因素研究[J]. 生态经济, 2021, 37(4): 35-43.
    [12] 冯杰, 张胜, 王涛. 中国省际土地利用碳排放及其影响因素分析[J]. 统计与决策, 2019, 35(5): 141-145.
    [13] 沈杨, 汪聪聪, 高超, 等. 基于城市化的浙江省湾区经济带碳排放时空分布特征及影响因素分析[J]. 自然资源学报, 2020, 35(2): 329-342.
    [14] 袁壮壮, 叶长盛, 李辉丹. 基于土地利用变化的南昌市碳排放效应分析[J]. 湖南师范大学自然科学学报, 2021, 44(5): 30-39.
    [15] LUO Xiang, AO Xinhe, ZHANG Zuo,et al. Spatiotemporal variations of cultivated land use efficiency in the Yangtze River Economic Belt based on carbon emission constraints[J]. Journal of Geographical Sciences, 2020, 30(4): 535-552.
    [16] 魏燕茹, 陈松林. 福建省土地利用碳排放空间关联性与碳平衡分区[J]. 生态学报, 2021, 41(14): 1-11.
    [17] 刘华军, 邵明吉, 吉元梦. 中国碳排放的空间格局及分布动态演进—基于县域碳排放数据的实证研究[J]. 地理科学, 2021, 41(11): 1917-1924.
    [18] 郑永超, 文琦. 宁夏自治区土地利用变化及碳排放效应[J]. 水土保持研究, 2020, 27(1): 207-212.
    [19] Guan Y, Kang L, Shao C et al. Measuring county-level heterogeneity of CO2 emissions attributed to energy consumption: A case study in Ningxia Hui Autonomous Region, China[J].Journal of Cleaner Production, 2017, 142(4): 3471-3481.
    [20] 孙梦华, 牛文浩, 张蚌蚌, 等. 黄河流域土地利用变化下生态系统服务价值时空演变及其响应——以陕甘宁地区为例[J]. 应用生态学报, 2021, 32(11): 3913-3922.
    [21] 宁夏回族自治区统计局. 宁夏统计年鉴2022[M]. 北京: 中国统计出版社, 2021.
    [22] .严慈, 侯兰功. 基于灰色理论的陕西省土地利用变化及其碳排放研究[J]. 西安理工大学学报, 2021, 31(1): 25-31.
    [23] 周嘉, 杨琳, 董美娜, 等. 基于土地利用的哈尔滨市2004~2012年碳排放强度变化分析[J]. 地理科学, 2015, 35(3): 322-327.
    [24] 赵荣钦, 张帅, 黄贤金, 等. 中原经济区县域碳收支空间分异及碳平衡分区[J]. 地理学报, 2014, 69(10): 1425-1437.
    [25] 汪一鸣. 宁夏人地关系研究[M]. 宁夏: 宁夏人民出版社, 2005.
    [26] 毛鸿欣, 贾科利, 高曦文, 等. 1980—2018年银川平原土地利用变化时空格局分析[J]. 科学技术与工程, 2020, 20(20): 8008-8018.
    [27] Friedlingstein, P. Global Carbon Budget 2020[J]. Earth Syst. Sci. Data 2020, (12): 3269–3340.
    [28] Mendelsohn, R., Sohngen, B, The net carbon emissions from historic land use and land use change[J]. J. For. Econ. 2019,34(3), 263-283.
    [29] 邹晓明, 王国兵, 葛之葳, 等. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176.
    [30] 贾科利, 李小雨, 魏慧敏, 等. 宁夏县域土地利用碳排放空间分异与风险研究[J/OL]. 干旱区地理. https://kns.cnki.net/kcms/detail//65.1103.x.20230227.1848.001.html.
    [31] 周永斌, 邹晓明. 从适地适树到适钙适树的理论与例证[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 1-8.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:110
  • PDF: 541
  • HTML: 0
  • Cited by: 0
History
  • Received:March 21,2023
  • Revised:May 09,2023
  • Adopted:May 15,2023
  • Online: November 09,2023