Effects of Breccias and Round Gravels on Steep Cut Slope Runoff and Sediment Yield Under Simulated Rainfall
Author:
Clc Number:

S157.1,TV131.2

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The effects of breccias and round gravels on steep cut slope infiltration, runoff, sediment yield, and hydrodynamic characteristics were analyzed in order to provide a theoretical basis for a soil erosion prediction model and soil conservation on a steep cut slope on the Qinghai-Tibet Plateau.[Methods] Based on the shape and material composition of a steep cut slope and on climatic characteristics along the Pai-Mo road, the cut slope runoff and sediment yield process was observed by using indoor simulated rainfall experiments. The experimental conditions were 50° slope, 120 mm/h rainfall intensity, different gravel contents (30%, 40%, 50%), and different gravel roundness (pebble, breccia).[Results] The average infiltration rate for the pebble slope was higher than for the breccia slope. The average runoff rate for the pebble slope was lower than for the breccia slope. The initial runoff time for the pebble slope was significantly later than for the breccia slope. The water flow state and pattern for both slopes were laminar and jet, respectively. Although the runoff shear force and Reynolds number for the pebble slope was slightly smaller than for the breccia slope, the Froude number and the average flow velocity for the pebble slope were larger than for the breccia slope. Therefore, the ability of runoff to carry sediment was greater for the pebble slope. The sediment yield rate for the pebble slope was double the rate observed for the breccia slope, and the total sediment yield for the pebble slope was about 20% higher than for the breccia slope.[Conclusion] Because pebbles do not fit closely together in the soil, they are more likely to cause turbulence under heavy rainfall, causing small annular rills to form centered on the pebbles scattered all over the pebble slope. The rill density and total sediment yield will be greater for a steep cut slope underlain by alluvial deposits than for a steep cut slope underlain by colluvial deposits.

    Reference
    [1] 姚檀栋,陈发虎,崔鹏,等.从青藏高原到第三极和泛第三极[J].中国科学院院刊,2017,32(9):924-931.
    [2] 徐倩,焦菊英,严晰芹,等.道路侵蚀研究的进展与展望[J].水土保持通报,2021,41(4):357-367.
    [3] 黄在智,孙侃,周晶,等.青藏高原生态脆弱区公路水土保持设计与实践[J].公路,2021,66(6):371-374.
    [4] 徐宪立,张科利,庞玲,等.青藏公路路堤边坡产流产沙规律及影响因素分析[J].地理科学,2006,26(2):2211-2216.
    [5] 徐文杰,胡瑞林.土石混合体概念、分类及意义[J].水文地质工程地质,2009,36(4):50-56.
    [6] Li Tianyang, He Binghui, Chen Zhanpeng, et al. Effects of gravel on concentrated flow hydraulics and erosion in simulated landslide deposits[J]. Catena, 2017,156:197-204.
    [7] 杨兴,张家喜,彭培好,等.模拟降雨条件下不同砾石含量工程边坡土壤侵蚀及水动力学特征[J].水土保持通报,2019,39(6):9-15.
    [8] 杨苗苗,杨勤科,张科利,等.砾石含量对土壤可蚀性因子估算的影响[J].土壤学报,2021,58(5):1157-1168.
    [9] 马晨雷,戴翠婷,刘窑军,等.砾石覆盖对紫色土坡面流水动力学参数的影响[J].水土保持学报,2019,33(6):150-155.
    [10] 康宏亮,王文龙,薛智德,等.陕北风沙区含砾石工程堆积体坡面产流产沙试验[J].水科学进展,2016,27(2):256-265.
    [11] 许海超.耕作引起的紫色泥岩破碎对坡面水文过程的影响[D].四川成都:中国科学院大学(中国科学院水利部成都山地灾害与环境研究所),2020.
    [12] 毛天旭,朱元骏,邵明安,等.模拟降雨条件下含砾石土壤的坡面产流和入渗特征[J].土壤通报,2011,42(5):1214-1218.
    [13] 王雪松,谢永生,陈曦,等.砾石对赣北红土工程锥状堆积体侵蚀规律的影响[J].泥沙研究,2015(1):67-74.
    [14] 赵本山,王生新,徐奎,等.山前洪积扇坡面细沟侵蚀跌坑特征的试验研究[J].干旱区地理,2017,40(2):348-354.
    [15] 林敬兰.土石混合崩积体坡面细沟径流流速试验研究[J].水土保持学报,2020,34(5):119-123.
    [16] 孙狂飙,罗易,袁超,等.边坡足尺模型试验人工模拟降雨装置的设计与参数率定[J].安全与环境工程,2019,26(2):69-75.
    [17] 张宽地,王光谦,孙晓敏,等.模拟植被覆盖条件下坡面流水动力学特性[J].水科学进展,2014,25(6):825-834.
    [18] 巩铁雄.砾石空间分布格局及对水文过程影响的研究[D].陕西杨凌:西北农林科技大学,2021.
    [19] 梁洪儒,余新晓,樊登星,等.砾石覆盖对坡面产流产沙的影响[J].水土保持学报,2014,28(3):57-61.
    [20] Mandal U K, Rao K V, Mishra P K, et al. Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain[J]. European Journal of Soil Science, 2005,56(4):435-443.
    [21] Waldschläger K, Schüttrumpf H. Infiltration behavior of microplastic particles with different densities, sizes, and shapes-from glass spheres to natural sediments[J]. Environmental science & technology, 2020,54(15):9366-9373.
    [22] Peng Xudong, Shi Dongmei, Jiang Dong, et al. Runoff erosion process on different underlying surfaces from disturbed soils in the Three Gorges Reservoir Area, China[J]. Catena, 2014,123:215-224.
    [23] 倪世民,冯舒悦,王军光,等.不同质地重塑土坡面细沟侵蚀形态与水力特性及产沙的关系[J].农业工程学报,2018,34(15):149-156.
    [24] 王健,李鹤,孟秦倩,等.黄土坡面细沟横断面形态及其水流动力学与挟沙特性[J].水土保持学报,2015,29(3):32-37.
    [25] 蒋芳市,张海东,陈培松,等.土石混合崩积体坡面细沟跌坑发育试验研究[J].水土保持学报,2019,33(6):27-33.
    [26] Cagnoli B, Romano G P. Effects of flow volume and grain size on mobility of dry granular flows of angular rock fragments:A functional relationship of scaling parameters[J]. Journal of Geophysical Research:Solid Earth, 2012,117:B02207.
    [27] 韩珍,王小燕,李馨欣.碎石含量影响下紫色土坡面径流流速变化过程及土壤侵蚀的阶段性[J].中国农业大学学报,2016,21(10):102-108.
    [28] 李建明,王文龙,李宏伟,等.黄土区工程堆积体石砾对流速及产沙影响试验研究[J].水力发电学报,2015,34(9):64-74.
    [29] Shen Haiou, Zheng Feili, Wen Leilei, et al. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope[J]. Soil and Tillage Research, 2016,155,429-436.
    [30] 郑粉莉,江忠善,高学田.水蚀过程与预报模型[M].北京:科学出版社,2008.
    [31] Rieke-Zapp D, Poesen J, Nearing M A. Effects of rock fragments incorporated in the soil matrix on concentrated flow hydraulics and erosion[J]. Earth Surface Processes and Landforms:The Journal of the British Geomorphological Research Group, 2007,32(7):1063-1076.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

罗璟,裴向军,黎俊豪,曹龙熹,单诗涵,黄颍萍.模拟降雨条件下角砾和圆砾对陡峭路堑边坡产流产沙的影响[J].水土保持通报英文版,2023,43(3):1-10

Copy
Share
Article Metrics
  • Abstract:1062
  • PDF: 872
  • HTML: 692
  • Cited by: 0
History
  • Received:September 12,2022
  • Revised:October 11,2022
  • Online: August 16,2023