Monitoring and Analyzing Driving Forces of Ecological Environmental Quality in Taiyuan Urban Agglomeration
Author:
Clc Number:

X87,X821,X171.1

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Objective] The changes in ecological environmental quality in the Taiyuan urban agglomeration from 2002 to 2021 were studied in order to provide scientific recommendations for sustainable urban development and green transformation. [Methods] We used the GEE platform, MODIS images, and principal component analysis to construct the ecological remote sensing index (RSEI) by coupling greenness, humidity, heat, and dryness. The spatial properties of ecological quality changes in the Taiyuan urban agglomeration were studied by using combining stability analysis and spatial autocorrelation analysis. The influence of various factors on RSEI was quantified by geographic detectors. [Results] The contribution rate of the first principal component was greater than 75% in all years, indicating that RSEI values extracted based on the first principal component could comprehensively characterize the ecological environmental quality in the study area. The ecological environmental quality of the Taiyuan urban agglomeration showed an overall upward trend from 2002 to 2021, increasing from 0.433 to 0.488, with a growth rate of about 0.0029/yr. The ecological improvement area accounted for 17.1%, mainly located in Lanxian County and Jingle County in the northwest. There was obvious spatial autocorrelation in the change of ecological environmental quality in the study area, and the Moran’s I index was 0.729. The high-high and low-low aggregation areas basically coincided with the ecological improvement and degradation areas, respectively. The ecological environmental quality of the Taiyuan urban agglomeration was significantly correlated with the climatic factors of relative humidity, air temperature, and potential evapotranspiration. [Conclusion] The ecological environmental quality of the Taiyuan urban agglomeration has improved from 2002 to 2021, and the vegetation coverage and urban expansion factors have had great impacts. RSEI can effectively monitor changes in the ecological environmental quality in the study area.

    Reference
    [1] 柏卓彤,陆化普.基于中心城市辐射与带动作用的城市群发展研究[C].2022世界交通运输大会(WTC2022)论文集(运输规划与交叉学科篇),2022:603-610.
    [2] 翟玉鑫,张飞云,马丽娜.近40年新疆三生用地转型及其生态环境效应演变[J].土壤通报,2022,53(3):514-523.
    [3] 张玉凤,李双双,延军平.秦岭—淮河南北城市生态安全变化特征及其影响因素[J].长江流域资源与环境,2021,30(11):2736-2745.
    [4] 宓泽锋,曾刚,周灿,等.长三角城市群生态文明建设问题及潜力研究:基于5大城市群的比较[J].长江流域资源与环境,2018,27(3):463-472.
    [5] 皮伟强.基于地面高光谱植被指数地表微斑块阈值分类[D].内蒙古呼和浩特:内蒙古农业大学,2018.
    [6] 陈雨烨,王培娟,张源达,等.基于3种遥感指数的东北春玉米干旱识别对比[J].应用气象学报,2022,33(4):466-476.
    [7] 胡荣明,李少杰,马春笑,等.基于遥感影像的铜川市不透水层覆盖变化研究[J].西安科技大学学报,2020,40(3):449-457.
    [8] Hou J, Rusuli Y. Assessment of soil salinization risk by remote sensing-based ecological index (RSEI) in the Bosten Lake watershed, Xinjiang in Northwest China [J]. Sustainability, 2022,14(12):7118.
    [9] 徐涵秋.城市遥感生态指数的创建及其应用[J].生态学报,2013,33(24):7853-7862.
    [10] 柯丽娜,徐佳慧,王楠,等.基于遥感生态指数的滨海湿地生态质量变化评价:以辽东湾北部区为例[J].生态环境学报,2022,31(7):1417-1424.
    [11] 金佳琦.基于遥感生态指数的多源遥感影像沙漠环境监测[D].山东济南:山东大学,2021.
    [12] 张静,杨丽萍,贡恩军,等.基于谷歌地球引擎和改进型遥感生态指数的西安市生态环境质量动态监测[J].生态学报,2023,43(5):2114-2127.
    [13] Liu C, Yang M, Hou Y, et al. Spatiotemporal evolution of island ecological quality under different urban densities: a comparative analysis of Xiamen and Kinmen Islands, Southeast China [J]. Ecological indicators, 2021,124:107438.
    [14] 代云豪,管瑶,刘孟琴,等.1990—2020年阿拉尔垦区生态环境质量动态监测与评价[J].水土保持通报,2022,42(2):122-128.
    [15] 李蕊,陈国清,李玮贤,等.基于遥感生态指数的神东矿区1995—2020年生态环境质量的时空变化特征分析[J].水土保持通报,2021,41(3):143-151.
    [16] Qureshi S, Alavipanah S K, Konyushkova M, et al. A remotely sensed assessment of surface ecological change over the Gomishan Wetland, Iran [J]. Remote Sensing, 2020,12(18):2989-.
    [17] 何天星,田宁,周锐,等.基于GEE和RSEI的长三角一体化示范区生态环境质量动态评估[J].生态学杂志,2023,42(2):436-444.
    [18] 刘海龙,王跃飞,谢亚林,等.太原城市群三生空间时空演变特征及功能[J].水土保持通报,2020,40(5):310-318,327.
    [19] 王建,赵牡丹,李健波,等.基于MODIS时序数据的秦巴山区生态环境质量动态监测及驱动力分析[J].山地学报,2021,39(6):830-841.
    [20] 徐涵秋,李春强,林梦婧.RSEI应使用主成分分析或核主成分分析?[J].武汉大学学报(信息科学版),2023,48(4):506-513.
    [21] Li Ning, Wang Jiayao, Qin Fen. The improvement of ecological environment index model RSEI [J]. Arabian Journal of Geosciences, 2020,13:1-14.
    [22] 王芳,李文慧,林妍敏,等.1990—2020年黄河流域典型生态区生态环境质量时空格局及驱动力分析[J].环境科学,2023,44(5):2518-2527.
    [23] 吴小波,范晓雨,刘晓敬,等.基于Google Earth Engine云平台的成渝城市群生态环境质量时空变化[J].生态学杂志,2023,42(3):759-768.
    [24] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.
    [25] 余伟伟,苏晓杰.开发区转型发展与城市空间结构重组的互动:以山西转型综合改革示范区为例[J].城乡规划,2021(S1):28-35.
    [26] 徐补生,赵建军,马跃.岚县“大生态”战略加快绿化步伐[N].山西日报,2011-05-20(01).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘晋,陈天伟,刘鹏,贾相苹.太原城市群生态环境质量监测及驱动力分析[J].水土保持通报英文版,2023,43(4):154-161,210

Copy
Share
Article Metrics
  • Abstract:257
  • PDF: 16323
  • HTML: 0
  • Cited by: 0
History
  • Received:November 22,2022
  • Revised:December 29,2022
  • Online: September 27,2023