Carbon Emission Quota Allocation Among Provinces in China in 2030
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    [Objective] Under total carbon emission control, a fair and scientific allocation of carbon emission quota among provinces is a key approach to achieve the goal of "double carbon", as well as an important cornerstone of the carbon emission trading system. The marginal cost of carbon emission reduction in the results of carbon emission quota allocation under different scenarios was analyzed, with a view to determining the optimal carbon emission quota allocation scheme at the lowest cost, providing a theoretical basis for the subsequent regional allocation work and a reference for the formulation of regional carbon emission reduction schemes. [Methods] The ecological index was introduced on the basis of the carbon quota allocation index established by predecessors, and four scenarios including equity, efficiency, ecology and equity-eco-efficiency were set. The SBM dual model was used to calculate the regional marginal carbon emission reduction cost under different scenarios, and the optimal allocation scheme was determined based on this. [Results]The results show that: Under the scenarios of fairness, efficiency, ecology and consideration, the average marginal cost of carbon emission reduction was 0.295 million yuan/t, 0.312 million yuan/t, 0.291 million yuan/t, and 0.309 million yuan/t, respectively. The emission reduction cost of the scheme introducing ecological index is significantly lower, and it can be inferred that the carbon sink offsets part of the carbon emissions which are difficult and costly to reduce emissions. The cost of emission reduction under the balanced scenario is significantly higher than that under the fair and ecological scenarios, indicating that the improvement of carbon emission efficiency will lead to the increase of marginal carbon emission reduction cost. [Conclusion] The carbon emission quota under ecological scenario is the best scheme to achieve the "double carbon" goal with the lowest marginal carbon emission reduction cost, and can be used as a reference for the formulation of regional carbon emission plans.

    Reference
    [1] 李治国, 杨雅涵, 赵园春. 地方政府竞争促进了地区碳排放强度吗?[J]. 经济与管理评论, 2022,38(02): 136-146.
    [2] 高艳丽, 董捷, 李璐, 等. 碳排放权交易政策的有效性及作用机制研究——基于建设用地碳排放强度省际差异视角[J]. 长江流域资源与环境, 2019,28(04): 783-793.
    [3] 戚永颖. 碳中和愿景下的能源绿色转型发展——访中国海油集团能源经济研究院院长王震[J]. 国际石油经济, 2021,29(10): 1-6.
    [4] 李泽坤, 任丽燕, 马仁锋, 等. 基于效率视角的浙江省2030年碳排放配额分析[J]. 生态科学, 2020,39(03): 201-211.
    [5] 宋杰鲲, 张凯新, 曹子建. 省域碳排放配额分配—融合公平和效率的研究[J]. 干旱区资源与环境, 2017,31(05): 7-13.
    [6] 王勇, 程瑜, 杨光春, 等. 2020和2030年碳强度目标约束下中国碳排放权的省区分解[J]. 中国环境科学, 2018,38(08): 3180-3188.
    [7] Yang Y, Cai W J ,Wang C, et al. Regional Allocation of CO_2 Intensity Reduction Targets Based on Cluster Analysis[J].Advances in Climate Change Research,2012,3(04):220-228.
    [8] Chang L Y, Hao X G, Song M, et al. Carbon emission performance and quota allocation in the Bohai Rim Economic Circle[J]. Journal of Cleaner Production,2020,258(C):120722.
    [9] Zhou X, Guan X L, Zhang M, et al. Allocation and simulation study of carbon emission quotas among China''s provinces in 2020.[J]. Environmental science and pollution research international, 2017,24(8):7088-7113.
    [10] Chen L Y, He Y, Li G, et al. Initial Allocation Model of CO2 Emission Allowances Based on the Equity-Efficiency Tradeoff[J]. Asia-Pacific Journal of Operational Research, 2021,38(02).
    [11] Chen Y L, Gu B H, Tan X C, et al. Allocation of provincial carbon emission allowances under China''s 2030 carbon peak target: A dynamic multi-criteria decision analysis method.[J]. The Science of the total environment, 2022,837: 155798.
    [12] Kong Y C, Zhao T, Yuan R, et al. Allocation of carbon emission quotas in Chinese provinces based on equality and efficiency principles[J]. Journal of Cleaner Production, 2019,211: 222-232.
    [13] Choi Y R, Zhang N, Zhou P. Efficiency and abatement costs of energy-related CO 2 emissions in China: A slacks-based efficiency measure[J]. Applied Energy, 2012,98: 198-208.
    [14] Duan F M, Wang Y, Wang Y, et al. Estimation of marginal abatement costs of CO2 in Chinese provinces under 2020 carbon emission rights allocation: 2005-2020.[J]. Environmental science and pollution research international, 2018,25(24):24445–24468.
    [15] 张涛. 《2030年前碳达峰行动方案》解读[J]. 生态经济, 2022,38(01): 9-12.
    [16] 周迪, 郑楚鹏, 华诗润, 等. 公平与效率协调视角下的中国碳减排潜力与路径[J]. 自然资源学报, 2019,34(01): 80-91.
    [17] 田云, 林子娟. 巴黎协定下中国碳排放权省域分配及减排潜力评估研究[J]. 自然资源学报, 2021,36(04): 921-933.
    [18] 黄奇. 基于WITCH模型的区域碳排放权分配与排放路径研究[D]. 哈尔滨工业大学, 2020.
    [19] 丁仲礼, 段晓男, 葛全胜, 等. 2050年大气CO_2浓度控制:各国排放权计算[J]. 中国科学(D辑:地球科学), 2009,39(08): 1009-1027.
    [20] 蒋惠琴. 碳排放权初始配额分配研究[D]. 浙江工业大学, 2019.
    [21] 邢佳琛. 基于零和收益DEA模型的中国2030年碳排放目标省际分配研究[D]. 天津大学, 2019.
    [22] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978,2(6): 429-444.
    [23] 郑立群. 中国各省区碳减排责任分摊——基于零和收益DEA模型的研究[J]. 资源科学, 2012,34(11): 2087-2096.
    [24] Lins M P E, Gomes E G, de Mello J C C B, et al. Olympic ranking based on a zero sum gains DEA model[J]. European Journal of Operational Research, 2003,148(2): 312-322.
    [25] Gomes E G, Lins M P E. Modelling Undesirable Outputs with Zero Sum Gains Data Envelopment Analysis Models[J]. The Journal of the Operational Research Society, 2008,59(5): 616-623.
    [26] 王文举, 陈真玲. 中国省级区域初始碳配额分配方案研究——基于责任与目标、公平与效率的视角[J]. 管理世界, 2019,35(03): 81-98.
    [27] 孔颖超. 基于公平和效率原则的中国碳配额初始分配研究[D]. 天津大学, 2019.
    [28] 张凯新. 我国省域碳排放权配额分配研究[D]. 中国石油大学(华东), 2017.
    [29] 王文举, 孔晓旭. 基于2030年碳达峰目标的中国省域碳配额分配研究[J]. 数量经济技术经济研究, 2022,39(07): 113-132.
    [30] 郭茹, 吕爽, 曹晓静, 等. 基于ZSG-DEA模型的中国六大行业碳减排分配效率研究[J]. 生态经济, 2020,36(01): 13-18.
    [31] 高杨, 姚雪, 白永秀, 等. 有为“链长”赋能绿色低碳农业产业链:内在机理与实现路径[J]. 经济学家, 2022(12): 116-124.
    [32] 肖玉仙, 尹海涛. 我国碳排放权交易试点的运行和效果分析[J]. 生态经济, 2017,33(05): 57-62.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 30,2023
  • Revised:June 16,2023
  • Adopted:June 17,2023
  • Online: November 09,2023