• Article
  • | |
  • Metrics
  • |
  • Reference [50]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] Mangroves are part of a wetland ecosystem found along tropical and sub-tropical coastlines. The soil active organic carbon composition, soil enzyme activity, and the interaction between them, under different plant community conditions was analyzed in order to predict the ecological structure and functional development trend of the mangrove area in Dongzhai Port, and provide a scientific basis for ecological restoration and protection of the mangrove wetland in Dongzhai Port. [Methods] Soil enzyme activity, active organic carbon content in the soil, and physicochemical properties of nine mangrove communities 〔Rhizophora stylosa (Type 1), Avicennia marina (Type 2), Ceriops tagal (Type 3), Bruguiera sexangula + C. tagal (Type 4), Aegiceras corniculatum + B. sexangula + Kandelia obovata (Type 5), B. sexangula + Lumnitzera racemose + A. corniculatum (Type 6), K. obovate + B. sexangula + L. racemose (Type 7), B. sexangula + Sonneratia apetala + A. corniculatum + K. obovata (Type 8), B. sexangula + S. apetala (Type 9)〕 were analyzed by field sampling. [Results] Soil organic carbon ranged from 6.57 g/kg to 74.87 g/kg in Dongzhai Port, with Type 7 and Type 1 communities having the highest and lowest soil organic carbon contents, respectively. Enzyme activity of wetland soil in each mangrove community followed the order of urease > phosphatase > catalase > sucrase. Type 8 community had the highest urease activity, significantly higher than Type 1 to Type 6 communities. Moreover, Type 8 community also reported the highest phosphatase activity, which was significantly higher than phosphatase activity for Type 1 to Type 3 communities. On the other hand, catalase activity was highest in Type 5 community, and significantly higher than in the other communities, except Type 6 and Type 7. Type 9 community recorded the highest sucrase activity, which was significantly higher than Type 2, Type 5, and Type 8 communities. Furthermore, it was found that urease, phosphatase, and catalase activities had significant positive correlations with soil organic carbon content. Urease and phosphatase activities were significantly negatively correlated with soil pH value, and significantly positively correlated with total nitrogen (TN) and total phosphorus (TP). Catalase and sucrase activities also had significant positive correlations with TN and TP. The redundancy analysis results indicated that light fraction carbon, total organic carbon, particulate organic carbon, and microbial biomass carbon (MBC) were the main factors affecting soil enzyme activity of mangrove communities in Dongzhai Port. [Conclusion] There was a strong positive correlation between soil enzyme activity and the carbon content of active organic matter. Therefore, soil enzyme activity can be used to characterize the soil carbon pool activity in the mangrove area of Dongzhai Port.

    Reference
    [1] De Paula N M, da Silva K, Brugnari T, et al. Biotech-nological potential of fungi from a mangrove ecosystem: Enzymes, salt tolerance and decolorization of a real textile effluent [J]. Microbiological Research, 2022,254:126899.
    [2] Bai Shijie, Li Jiangwei, He Zhili, et al. GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves [J]. Applied Microbiology and Biotechnology, 2013,97(15):7035-7048.
    [3] Fernandes S O, Gonsalves M J, Nazareth D R, et al. Seasonal variability in environmental parameters influence bacterial communities in mangrove sediments along an estuarine gradient [J]. Estuarine, Coastal and Shelf Science, 2022,270:107791.
    [4] 吴彬,张文主,田义超,等.北部湾典型红树林岛群生态系统的结构特征与碳储量研究[J].Journal of Resources and Ecology, 2022,13(3):458-465.
    [5] 刘双双,杨升,刘星,等.红树林对潮汐浸淹适应性研究进展[J].世界林业研究,2022,35(5):25-30.
    [6] 乐易迅,胡敏杰,赖兴凯,等.泉州湾河口湿地不同植被恢复下沉积物磷形态和酶活性特征[J].环境科学学报,2022,42(5):355-363.
    [7] 陈小花,陈宗铸,雷金睿,等.清澜港红树林湿地土壤酶活性与理化性质的关系[J].林业科学研究,2022,35(2):171-179.
    [8] 陈小花,陈宗铸,雷金睿,等.清澜港红树林湿地典型群落类型沉积物活性有机碳组分分布特征[J].生态学报,2022,42(11):4572-4581.
    [9] 陈小花,陈宗铸,雷金睿,等.东寨港不同植物群落土壤微生物量碳氮及养分特征[J].林业资源管理,2021(6):97-104.
    [10] Van de Broek M, Vandendriessche C, Poppelmonde D, et al. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary [J]. Global Change Biology, 2018,24(6):2498-2512.
    [11] Middleton B A, McKee K L. Degradation of mangrove tissues and implications for peat formation in Belizean Island forests [J]. Journal of Ecology, 2001,89(5):818-828.
    [12] Chen Yimin, Xu Xin, Jiao Xiaoguang, et al. Responses of labile organic nitrogen fractions and enzyme activities in eroded mollisols after 8-year manure amendment [J]. Scientific Reports, 2018,8:14179.
    [13] 马维伟,孙文颖.尕海湿地植被退化过程中有机碳及相关土壤酶活性变化特征[J].自然资源学报,2020,35(5):1250-1260.
    [14] Kim J, Lee J, Yang Yerang, et al. Microbial decomposition of soil organic matter determined by edaphic characteristics of mangrove forests in East Asia [J]. Science of the Total Environment, 2021,763:142972.
    [15] 吕晓波,钟才荣,张孟文,等.海南东寨港秋茄种群结构与数量动态变化特征研究[J].广东农业科学,2023,50(3):39-48.
    [16] 吕晓波,钟才荣,张孟文,等.海南东寨港红海榄种群结构与数量动态变化特征[J].热带生物学报,2023,14(5):490-498.
    [17] 张颖,朱忠礼,焦晨泰.基于分形的海南岛东寨港红树林景观空间结构变化研究[J].遥感技术与应用,2022,37(5):1179-1189.
    [18] 闫璧滢,陈渝川,雷丽娟,等.海南东寨港红树林植物和沉积物真菌多样性及其药用活性[J].中国抗生素杂志,2023,48(2):158-171.
    [19] 朱鹏光,甘义群,赖咏毅,等.海南东寨港红树林湿地沉积物氮形态空间分布特征及影响因素[J].地质科技通报,2023,42(1):369-377.
    [20] 温汉辉,郭源,胡凡,等.东寨港红树林湿地沉积物中多环芳烃的空间分布特征及其来源解析[J].安全与环境工程,2023,30(2):194-202.
    [21] 陈小花,陈宗铸,雷金睿,等.东寨港红树林中不同群落区表层土壤有机碳及其活性组分含量[J].湿地科学,2022,20(4):499-506.
    [22] 刘路,何子文.东寨港红树林土壤细菌群落结构的季节性变化[C]//首届植物科学前沿学术大会摘要集(二).江苏南京,2022:94.
    [23] 张攀,谢先军,黎清华,等.东寨港红树林沉积物中微生物群落结构特征及其对环境的响应[J].地球科学,2022,47(3):1122-1135.
    [24] 季一诺,赵志忠,吴丹,等.海南东寨港红树林沉积物中重金属的分布及其生物有效性[J].应用生态学报,2016,27(2):593-600.
    [25] 辛琨,颜葵,李真,等.海南岛红树林湿地土壤有机碳分布规律及影响因素研究[J].土壤学报,2014,51(5):1078-1086.
    [26] 李翠华,蔡榕硕,颜秀花.2010—2018年海南东寨港红树林湿地碳收支的变化分析[J].海洋通报,2020,39(4):488-497.
    [27] 陈小花,陈宗铸,雷金睿,等.清澜港红树林湿地土壤酶活性与理化性质的关系[J].林业科学研究,2022,35(2):171-179.
    [28] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [29] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [30] Marchand C. Soil carbon stocks and burial rates along a mangrove forest chronosequence (French Guiana) [J]. Forest Ecology and Management, 2017,384:92-99.
    [31] Stringer C E, Trettin C C, Zarnoch S J, et al. Carbon stocks of mangroves within the Zambezi river delta, Mozambique [J]. Forest Ecology and Management, 2015,354:139-148.
    [32] 赵泽阳,赵志忠,付博,等.海南岛北部地区红树林湿地土壤有机碳分布规律及影响因素[J].广东农业科学,2018,45(12):49-55.
    [33] 黄星.红树林土壤有机碳、重金属特征对红树林景观格局变化的响应:以海南东寨港和广西钦州湾为例[D].上海:华东师范大学,2017.
    [34] Dungait J A J, Hopkins D W, Gregory A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance [J]. Global Change Biology, 2012,18(6):1781-1796.
    [35] Sharma V, Hussain S, Sharma K R, et al. Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems [J]. Geoderma, 2014,232/233/234:81-87.
    [36] Zhang Yaohong, Ding Weixin, Luo Jiafa, et al. Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora [J]. Soil Biology and Biochemistry, 2010,42(10):1712-1720.
    [37] Sun Huimin, Jiang Jiang, Cui Lina, et al. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems [J]. Science of the Total Environment, 2019,673:502-510.
    [38] Cui Lina, Sun Huimin, Du Xuhua, et al. Dynamics of labile soil organic carbon during the development of mangrove and salt marsh ecosystems [J]. Ecological Indicators, 2021,129:107875.
    [39] Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils [J]. Soil Biology and Biochemistry, 2001,33(12/13):1633-1640.
    [40] 万忠梅,宋长春.土壤酶活性对生态环境的响应研究进展[J].土壤通报,2009,40(4):951-956.
    [41] 习盼,徐驰,刘茂松.盐城滩涂湿地土壤酶活性特征及其影响因素[J].浙江农业科学,2020,61(10):2150-2155.
    [42] 陈瑶,李云红,邵英男,等.阔叶红松林物种多样性与土壤理化特征研究[J].生态环境学报,2022,31(4):679-687.
    [43] 任奕炜,钟小瑛,衣华鹏,等.不同林分类型对叶功能性状、林下物种多样性及土壤养分的影响[J].林业科学研究,2023,36(2):161-168.
    [44] 陈模芳,赵熙洲,孔维勋,等.不同土地利用方式下土壤理化性质及酶活性的特征[J].北方园艺,2023(7):87-94.
    [45] Zuccarini P, Asensio D, Sardans J, et al. Effects of nitrogen deposition on soil enzymatic activity and soil microbial community in a Mediterranean holm oak forest [J]. Geoderma, 2023,430:116354.
    [46] Wang Xiaofang, Li Jialing, Xing Guitong, et al. Soil organic carbon distribution, enzyme activities, and the temperature sensitivity of a tropical rainforest in Wuzhishan, Hainan Island [J]. Forests, 2022,13(11):1943.
    [47] 王晶晶,黄刚,吕坤,等.热带-亚热带森林不同植被类型的土壤酶活性及化学计量特征[J].应用与环境生物学报,2023,29(2):423-431.
    [48] 孙毅,和润莲,何光熊,等.滇西并流河谷区土壤酶活性化学计量学特征与环境因子的关系[J].应用生态学报,2021,32(4):1269-1278.
    [49] 莫雪,陈斐杰,游冲,等.黄河三角洲不同植物群落土壤酶活性特征及影响因子分析[J].环境科学,2020,41(2):895-904.
    [50] 李聪,吕晶花,陆梅,等.滇东南典型常绿阔叶林土壤酶活性的海拔梯度特征[J].林业科学研究,2020,33(6):170-179.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

陈小花,陈宗铸,雷金睿,吴庭天,李苑菱.东寨港红树林湿地土壤因子与酶活性的关系[J].水土保持通报英文版,2023,43(5):79-86

Copy
Share
Article Metrics
  • Abstract:296
  • PDF: 755
  • HTML: 0
  • Cited by: 0
History
  • Received:August 03,2022
  • Revised:June 05,2023
  • Online: November 30,2023