Nutrient Characteristics and Factors Influencing Surface Soil with Gully Erosion on Sloping Farmland for Low Hilly Terrain in Black Soil Area
Author:
Clc Number:

S157.1

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The soil nutrient characteristics and influencing factors of surface soil gully erosion for low hilly terrain in the black soil area were studied in order to provide data and theoretical support for the rational use of land resources, accurate management of soil fertility, and restoration of degraded soil in the black soil area. [Methods] Surface soil gully erosion for different types of eroded ditches in Yanshou County, Heilongjiang Province was determined by measuring and analyzing soil samples from the 0—40 cm layer in each part of the erosion gully. [Results] ① The contents of soil organic matter, total nitrogen, total phosphorus, total potassium, available phosphorus, available potassium, and alkali hydrolyzable nitrogen were significantly different (p<0.05) for different erosion gully types compared with the check treatment. As an erosion gully developed, soil organic matter decreased in the 0—40 cm layer, and the contents of total nitrogen, total phosphorus, total potassium, available phosphorus, available potassium, and alkali hydrolyzable nitrogen also decreased. These nutrient contents were significantly different (p<0.05) in different soil layers. Soil nutrient contents decreased with increasing depth. Because of erosion deposition, the contents of soil organic matter, total nitrogen, total potassium, and alkali hydrolyzable nitrogen decreased dramatically at the head of the gully, and at the same time, the contents of soil organic matter, available phosphorus, and available potassium decreased slowly. ② The soil degradation index followed the order of CK>A2>A1>A3 in the 0—40 cm layer as erosion gullies developed, and the soil was gradually degraded. [Conclusion] Soil nutrients had an overall significant negative correlation with bulk density, and soil nutrients were positively correlated with water stable aggregates and clay content. Soil profile differences were the fundamental reason for the variation in soil nutrients. Erosion gully development was the secondary reason for nutrient changes. The contents of soil organic matter, total nitrogen, and total potassium were also affected by positional differences.

    Reference
    [1] 韩晓增,李娜.中国东北黑土地研究进展与展望[J].地理科学,2018,38(7):1032-1041.
    [2] 徐金忠.典型黑土区切沟发育关键驱动因素及特征研究[D].黑龙江哈尔滨:东北林业大学,2020.
    [3] 阎百兴,汤洁.黑土侵蚀速率及其对土壤质量的影响[J].地理研究,2005,24(4):499-506.
    [4] 魏晗梅,郑粉莉,冯志珍,等.薄层黑土区流域尺度土壤养分对侵蚀—沉积的响应[J].水土保持学报,2021,35(4):49-54.
    [5] 张孝存,郑粉莉,王彬,等.不同开垦年限黑土区坡耕地土壤团聚体稳定性与有机质关系[J].陕西师范大学学报(自然科学版),2011,39(5):90-95.
    [6] 许文旭,杨献坤,崔斌,等.东北黑土区典型坡耕地土层厚度及退化程度分析[J].中国水土保持科学(中英文),2021,19(3):28-36.
    [7] 水利部中国科学院中国工程院.中国水土流失防治与生态安全(总卷)[M].北京:科学出版社,2010.
    [8] 王文娟,邓荣鑫,张树文.东北典型黑土区讷谟尔河流域土地利用变化对沟蚀影响研究[J].自然资源学报,2016,31(5):833-844.
    [9] 甄怀才.典型黑土区坡耕地浅沟侵蚀特征及其影响[D].黑龙江哈尔滨:东北农业大学,2020.
    [10] 李全峰,李吉程,于明鹏,等.黑土耕作区侵蚀沟治理紧迫度空间分布特征[J].地理科学进展,2021,40(7):1208-1219.
    [11] 何彦星,张风宝,杨明义.137Cs示踪分析东北黑土坡耕地土壤侵蚀对有机碳组分的影响[J].农业工程学报,2021,37(14):60-68.
    [12] 张发民,杜兰兰,袁瀛,等.土壤侵蚀和沉积对土壤理化性状的影响[J].水土保持学报,2021,35(6):161-167.
    [13] 翟国庆,李永江,韩明钊,等.不同开垦年限坡地黑土耕层土壤有机碳库分配特征[J].应用生态学报,2019,30(12):4127-4134.
    [14] 邢培茹,郑粉莉,王彬.典型黑土区坡耕地土壤碱性磷酸酶和有机质空间分布研究[J].水土保持研究,2014,21(1):39-42.
    [15] 张孝存,郑粉莉,安娟,等.典型黑土区坡耕地土壤侵蚀对土壤有机质和氮的影响[J].干旱地区农业研究,2013,31(4):182-186.
    [16] 祁志,丁超,韩兴,等.沟坡侵蚀汇水区黑土水分和养分的空间异质性[J].水土保持通报,2020,40(5):79-87.
    [17] 杨维鸽.典型黑土区土壤侵蚀对土壤质量和玉米产量的影响研究[D].北京:中国科学院研究生院(教育部水土保持与生态环境研究中心),2016.
    [18] 冯志珍.东北薄层黑土区土壤侵蚀—沉积对土壤性质和玉米产量的影响研究[D].陕西杨凌:西北农林科技大学,2018.
    [19] 姜芸,王军,张莉.东北典型黑土区侵蚀沟形态及分布特征[J].农业工程学报,2020,36(7):157-165.
    [20] 王磊.多种外营力作用的黑土坡面复合土壤侵蚀过程与机理研究[D].陕西杨凌:西北农林科技大学,2020.
    [21] 张光辉,杨扬,刘瑛娜,等.东北黑土区土壤侵蚀研究进展与展望[J].水土保持学报,2022,36(2):1-12.
    [22] 赵春玲.黑龙江省延寿县耕地地力评价[M].北京:中国农业出版社,2020.
    [23] Randolph J. Environmental land use planning and management [M]. Washington: Island Press,2004.
    [24] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
    [25] 孙嘉兴.土壤全量氮磷钾测定方法的研究[J].中国农业信息,2015(7):75-76.
    [26] 张甘霖,龚子同.土壤调查实验室分析方法[M].北京:科学出版社,2012.
    [27] 刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1997.
    [28] Adejuwon J O, Ekanade O. A comparison of soil pro-perties under different landuse types in a part of the Nigerian cocoa belt [J]. Catena, 1988,15(3/4):319-331.
    [29] 金慧芳,史东梅,陈正发,等.基于聚类及PCA分析的红壤坡耕地耕层土壤质量评价指标[J].农业工程学报,2018,34(7):155-164.
    [30] 刘刚,闫静雯,谢云,等.黑土坡耕地土壤有机质空间变异及其与土壤侵蚀的关系: 以黑龙江省鹤山农场为例[J].地理科学,2016,36(11):1751-1758.
    [31] 何彦星.东北黑土区坡耕地土壤碳氮变化对侵蚀强度的响应研究[D].陕西杨凌:西北农林科技大学,2020.
    [32] 刘晓光,张少良,张兴义,等.典型黑土坡面速效钾空间分布特征研究[J].土壤通报,2015,46(1):133-141.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张晓莲,肖洋,张瑞豪,邵社刚,徐金忠,倪栋,贺旭杨,牛羽萱.黑土区低山丘陵坡耕地侵蚀沟浅层土壤养分特征及其影响因素[J].水土保持通报英文版,2023,43(5):87-94

Copy
Share
Article Metrics
  • Abstract:303
  • PDF: 822
  • HTML: 553
  • Cited by: 0
History
  • Received:November 28,2022
  • Revised:March 03,2023
  • Online: November 30,2023