Spatial-temporal Evolution and Prediction of Ecosystem Carbon Stocks on Hainan Island by Coupling the InVEST and FLUS Models
Affiliation:

海南省林业科学研究院(海南省红树林研究院)

  • Article
  • | |
  • Metrics
  • |
  • Reference [48]
  • | | | |
  • Comments
    Abstract:

    [Objective] The influence of land use changes on carbon storage were studied under the expansion of urbanization in Hainan Island to reveal the spatial-temporal evolution pattern of carbon storage and to predict future development trends in order to provide scientific evidence for optimizing the spatial layout of the national territory and for protecting ecologically sensitive areas. [Methods] Based on land use data from 1980 to 2020, this research showed the spatial-temporal changes of carbon storage for Hannan Island. The data were used with the carbon storage module of the InVEST model. The FLUS model and the InVEST model were coupled to simulate land use and carbon storage changes for Hainan Island in 2030 under three scenarios: the natural development scenario, the rapid development scenario, and the ecological protection scenario. [Results] (1) The main types of land use on Hainan Island were forest land and cultivated land. From 1980 to 2020, the areas of cultivated land, grassland, forest land, and unused land decreased to varying degrees. The area of construction land and water increased over this time period, with the fastest growth rate being 83.4% for construction land. (2) Carbon storage for Hainan Island was generally characterized as “high in the middle and low in the surrounding areas”. Carbon storage changed slightly from 1980 to 2000, with a decrease of about 0.03%. From 2000 to 2020, the urbanization process on Hainan Island accelerated, and the loss of carbon storage also increased. The average annual loss was about 372 t, and the cumulative loss of carbon storage was 7439 t. (3) The prediction results showed that construction land will continue to expand in the future, and carbon storage on Hainan Island in 2030 will decrease under the three scenarios. Under the rapid development scenario, the land use change of construction land was the largest, and carbon storage was the most vulnerable to loss, followed by the natural development scenario. The ecological protection scenario had the smallest change. [Conclusion] Land use planning for Hainan Free Trade Port in the future should focus on the protecting key ecological areas such as the central mountainous areas, strengthening the nature reserves of Hainan Island, optimizing the land use pattern, and strictly controlling the transformation of forest land, cultivated land, and wetlands into construction land. The efficiency of carbon sequestration should be improved, and forest carbon sinks should be increased to achieve regional sustainable development.

    Reference
    [1] 邓喆,丁文广,蒲晓婷, 等. 基于InVEST模型的祁连山国家公园碳储量时空分布研究[J]. 水土保持通报, 2022,42(3):1-12.
    [2] Heimann, M. Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature.451, 289–292 (2008).
    [3] 邵壮, 陈然, 赵晶, 等. 基于FLUS与InVEST 模型的北京市生态系统碳储量时空演变与预测[J].生态学报, 2022, 42(23).
    [4] 张燕, 师学义, 唐倩. 不同土地利用情景下汾河上游地区碳储量评估[J]. 生态学报, 2021, 41(1):360-373.
    [5] 张海凤,崔桂善.土地利用/覆盖类型的变化对陆地生态系统碳收支的影响[J].中国资源综合利用,2019,37(1):176-179.
    [6] 葛全胜, 戴君虎, 何凡能, 等. 过去300年中国土地利用、土地覆被变化与碳循环研究[J]. 中国科学:D 辑: 地球科学, 2008,38(2): 197-210.
    [7] 崔旺来, 蔡莉, 奚恒辉, 等. 基于土地利用/覆盖变化的浙江大湾区生态安全评价及多情景模拟分析[J]. 生态学报, 2022, 42(6): 2136-2148.
    [8] 中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见.(2021-10-24). http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm
    [9] 海南省人民政府关于印发海南省碳达峰实施方案的通知.(2022-8-9). https://www.hainan.gov.cn/hainan/szfwj/202208/911b7a2656f148c08e5c9079227103a7.shtml
    [10] 史名杰, 武红旗, 贾宏涛, 等. 基于MCE-CA-Markov和InVEST模型的伊犁谷地碳储量时空演变及预测[J].农业资源与环境学报, 2021, 39(6):1010-1019.
    [11] 刘洋, 张军, 周冬梅, 等. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 2021, 41(10):4052-4065.
    [12] Fang, J., Chen, A., Peng, C., Zhao, S. Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001).
    [13] 马学威, 熊康宁, 张俞, 等. 森林生态系统碳储量研究进展与展望[J].西北林学院学报,2019,34(5):62-72.
    [14] 甄伟, 黄玫, 翟印礼, 等. 辽宁省森林植被碳储量和固碳速率变化[J]. 应用生态学报, 2014,25(5): 1259-1265.
    [15] 亓伟伟, 牛海山, 汪诗平, 等. 增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究[J].生态学报,2012,32(6):1713-1722.
    [16] 侯红艳, 戴尔阜, 张明庆. InVEST 模型应用研究进展[J].首都师范大学学报:自然科学版,2018, 39(4):62-67.
    [17] Zhao Minmin, He Zhibin, Du Jun, et al. 2019. Assessing the Effects of Ecological Engineering on Carbon? Storage by Linking the CA-Markov and InVEST Models. Ecological Indicators, 98: 29-38.
    [18] 杨潋威, 赵娟, 朱家田, 等. 基于PLUS 和InVEST 模型的西安市生态系统碳储量时空变化与预测[J/OL].自然资源遥感.https://kns.cnki.net/kcms/detail/10.1759.P.20220729.1044.018.html
    [19] 林彤, 杨木壮, 吴大放, 等. 基于InVEST-PLUS 模型的广东省碳储量空间关联性及预测[J/OL].中国环境科学.https://doi.org/10.19674/j.cnki.issn1000-6923.20220615.012
    [20] 张凯琪, 陈建军, 侯建坤, 等. 耦合InVEST 与GeoSOS-FLUS 模型的桂林市碳储量可持续发展研究[J].中国环境科学,2022,42(6):2799-2809.
    [21] Liu X P, Liang X, Li X, et al. A future land use simulation model(FLUS) for simulating multiple land use scenarios by coupling humanand natural effects [J]. Landscape and Urban Planning, 2017,168:94-116.
    [22] 齐麟, 许东, 朱琪, 等. 基于GeoSOS-FLUS 平台的东北森林屏障带生态格局优化[J]. 生态学杂志, 2021,40(11):3448-3462.
    [23] 刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST 模型的中国未来土地利用变化及其对碳储量影响的模拟[J].热带地理,2019,39(3):397-409.
    [24] 李妙宇, 上官周平, 邓蕾. 黄土高原地区生态系统碳储量空间分布及其影响因素[J].生态学报,2021,41(17):6786-6799.
    [25] 吴佩君, 刘小平, 黎夏, 等. 基于InVEST模型和元胞自动机的城市扩张对陆地生态系统碳储量影响评估——以广东省为例[J].地理与地理信息科学,2016,32(5):22-28,36.
    [26] 朱志强, 马晓双, 胡洪. 基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J]. 水土保持通报, 2021, 41(2):222-229.
    [27] 何海珊, 赵宇豪, 吴健生. 低碳导向下土地覆被演变模拟——以深圳市为例[J].生态学报,2021,41(21):8352-8363.
    [28] 朱文博, 张静静, 崔耀平, 等. 基于土地利用变化情景的生态系统碳储量评估:以太行山淇河流域为例[J].地理学报,2019,74(3):446-459.
    [29] 刘冠, 李国庆, 李洁, 等. 基于InVEST 模型的1999-2016年麻塔流域碳储量变化及空间格局研究[J].干旱区研究,2021,38(1):267-274.
    [30] 朱丽亚, 胡克, 孙爽, 等. 基于InVEST 模型的辽宁省海岸带碳储量时空变化研究[J].现代地质,2022,36(1):96-104.
    [31] 段璇瑜,龚文峰,孙雨欣,等.海南岛海岸带土地利用变化及其对碳储量时空演变的影响[J].水土保持通报,2022,42(5):301-311.
    [32] 郭晓伟, 骆土寿, 李意德, 等.海南尖峰岭热带山地雨林土壤有机碳密度空间分布特征[J]. 生态学报, 2015, 35( 23) :7878-7886.
    [33] 杨熙,余威,何静,等.海南黎安港海草床碳储量评估[J]. 海洋科学. 2022,46(11):116-125.
    [34] 张育诚,韩念龙,胡珂,等.海南岛中部山区土地利用变化对碳储量时空分异的影响[J]. 南京林业大学学报(自然科学版). 2023,47(02): 115-122.
    [35] 王文蕾, 陈宇翔, 王旭, 等. 海南岛桉树林土壤碳库研究[J]. 中南林业科技大学学报, 2016, 36(2): 91-95.
    [36] 褚梦凡,肖晓彤,丁杨,等.海南儋州湾红树林区沉积有机质来源及碳储量[J].海洋科学. 2021,45(02):22-31.
    [37] 杨小波, 陈宗铸, 李东海, 等. 海南植被志[M].科学出版社, 2019.
    [38] 雷金睿, 陈宗铸, 陈小花, 等. 1980—2018 年海南岛土地利用与生态系统服务价值时空变化[J].生态学报,2020,40( 14) : 4760-4773.
    [39] 周汝波, 林媚珍, 吴卓, 等. 珠江西岸生态系统碳储量对土地利用变化的响应[J]. 生态科学, 2018, 37(6): 175-183.
    [40] 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, (5): 518-522.
    [41] 郭椿阳,高尚,周伯燕,等.基于格网的伏牛山区土地利用变化对生态服务价值影响研究[J].生态学报,2019,39( 10) : 3482-3493.
    [42] Liu Xiaoping, Liang Xun, Li Xia*, Xu Xiaocong*, Ou Jinpei , Chen Yimin, Li Shaoying, Wang Shaojian , and Pei Fengsong. 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168: 94–116.
    [43] Liang Xun , Liu Xiaoping*, Li Xia*, Chen Yimin, Tian He, Yao Yao. 2018 . Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landscape and Urban Planning, 177: 47–63.
    [44] 王保盛,廖江福,祝薇,等.基于历史情景的FLUS模型邻域权重设置——以闽三角城市群2030年土地利用模拟为例[J].生态学报,2019,39(12):4284-4298.
    [45] 朱文博,张静静,崔耀平,等.基于土地利用变化情景的生态系统碳储量评估:以太行山淇河流域为例[J].地理学报,2019,74(3):446-459.
    [46] 何磊,叶思源,赵广明,等.海岸带滨海湿地蓝碳管理的研究进展[J/OL].中国地质.https://kns.cnki.net/kcms/detail//11.1167.P.20230301.1129.002.html.
    [47] 陈鹭真,卢伟志,林光辉译. 滨海蓝碳——红树林、盐沼、海草床碳储量和碳排放因子评估方法[M]. 厦门大学出版社. 2018.
    [48] 吕超群,孙书存.陆地生态系统碳密度格局研究概述[J].植物生态学报,2004,28(5):692-703.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 08,2023
  • Revised:July 12,2023
  • Adopted:July 12,2023
  • Online: November 09,2023