Simulation of spatial evolution of carbon sink in Inner Mongolia section of Yellow River basin based on InVEST-FLUS model and the influencing factors
  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Objective] To investigate the influence of land use change patterns on the spatial distribution of carbon sinks in the Inner Mongolia section of the Yellow River Basin, and to identify the main driving factors behind, so as to provide a basis for ecological spatial development directions and sink enhancement policies in the study area.[Methods] Taking the Inner Mongolia section of the Yellow River Basin as an example, we used the InVEST-FLUS model to analyze the changes of carbon sink capacity in each period based on land use data in 2000, 2010 and 2020, and simulated the patterns of carbon stock changes in 2040 under three different scenarios of natural development, ecological conservation and agricultural priority, and identified the factors behind the differences in the spatial distribution of carbon sinks with the help of geographic probes. The main driving factors behind the differences in spatial distribution of carbon sinks are identified with the help of geographic probes. [Results]① From 2000 to 2020, carbon storage in the Mongolian section of the Yellow River Basin increased first and then decreased, with an overall increase of 8.63×106t, in which subsurface biological carbon storage increased by 3.91×106t and soil carbon storage increased by 2.28×106t. ②Carbon storage continued to decrease by 3.92×106t in the future natural development scenario, but increased by 22.1×106t in the ecological protection scenario, which was higher than that of 4.99×106t in the agricultural priority scenario. Soil carbon storage was the key to the incremental difference. ③The unbalanced distribution of annual mean rainfall and annual mean temperature is the main factor that causes the difference of various carbon pools in the Mongolian section of the Yellow River Basin. [Conclusion] Reasonable ecological protection policies are more in line with the future requirements of urban intensification and ecological high-quality development, and in the future, we should pay attention to desertification prevention and control and promote forest and grassland construction, so as to provide a guarantee for improving the regional ecological security pattern and sink enhancement policies.

    Reference
    [1] 杜之利,苏彤,葛佳敏,等. 碳中和背景下的森林碳汇及其空间溢出效应[J]. 经济研究,2021,56(12):187-202.
    [2] 徐冠华,刘琦岩,罗晖,等. 后疫情时代全球气候变化的应对与抉择[J]. 遥感学报,2021,25(05):1037-1042.
    [3] 黄贤金,张秀英,卢学鹤,等. 面向碳中和的中国低碳国土开发利用[J]. 自然资源学报,2021,36(12):2995-3006.
    [4] 李培林. 面对未来:我国城镇化的特征、挑战和趋势[J]. 中国社会科学院大学学报,2022,42(08):5-20+139+145.
    [5] 邹桃红,陈鹏,刘家福,等. 不同土地利用情景下四平市生态系统碳储量时空演变[J]. 中国环境科学:1-11.
    [6] 曾娟,刘毅华,吴大放. 广州市土地利用变化的碳排放效应研究[J]. 广东农业科学,2013,40(06):186-189.
    [7] 郑永超,文琦. 宁夏自治区土地利用变化及碳排放效应[J]. 水土保持研究,2020,27(01):207-212.
    [8] 许蕊,黄贤金,王佩玉,等. 黄河流域国土空间碳中和度研究——以内蒙古段为例[J]. 生态学报,2022,42(23):9651-9662.
    [9] 张楚强,向洋,方婷,等. LUCC影响下太原市生态系统碳储量时空变化及预测[J]. 安全与环境工程,2022,29(06):248-258.
    [10] 邹文涛,何友均,叶兵,等. 基于InVEST模型的钱江源国家公园生态系统碳储量研究[J]. 中南林业科技大学学报,2021,41(03):120-128.
    [11] 巩晟萱,张玉虎,李宇航. 基于PLUS-InVEST模型的京津冀碳储量变化及预测[J]. 干旱区资源与环境,2023,37(06):20-28.
    [12] 袁雪松,周俊,胡蓓蓓,等. 基于FLUS模型粤港澳大湾区“三生空间”多情景模拟预测[J]. 地理科学,2023,43(03):564-574.
    [13] 牛统莉,熊立华,陈杰,等. 基于PLUS模型的长江流域土地利用变化模拟与多情景预测[J]. 武汉大学学报(工学版):1-16.
    [14] 李海萍,王语萌,杜佳琪. 基于保护生态服务价值的县域城市扩展情景分析——以浙江省安吉县为例[J]. 生态学报,2022,42(19):7858-7870.
    [15] 王保盛,廖江福,祝薇,等. 基于历史情景的FLUS模型邻域权重设置——以闽三角城市群2030年土地利用模拟为例[J]. 生态学报,2019,39(12):4284-4298.
    [16] 郑佳乐,李粉玲,张晓东,等. 宁夏引黄灌区生态承载力分析[J]. 水土保持学报,2023,37(03):164-171.
    [17] 祁强强,徐占军,李娜艳,等. 黄河流域碳排放的时空分布及影响因素研究[J]. 环境污染与防治,2023,45(04):577-582.
    [18] 刘希朝,李效顺,蒋冬梅. 基于土地利用变化的黄河流域景观格局及生态风险评估[J]. 农业工程学报,2021,37(04):265-274.
    [19] 付乐,迟妍妍,于洋,等. 2000—2020年黄河流域土地利用变化特征及影响因素分析[J]. 生态环境学报,2022,31(10):1927-1938.
    [20] 付建新. 山西黄河流域不同土地利用类型NDVI时空变化及其对气温、降水的响应[J]. 水土保持研究,2023,30(03):364-372.
    [21] 吴翠霞,冯永忠,赵浩,等. 基于土地利用变化的甘肃省黄河流域生态系统服务价值研究[J]. 中国沙漠,2022,42(06):304-316.
    [22] Jie Yang, Xin Huang. (2022). The 30 m annual land cover datasets and its dynamics in China from 1990 to 2021 [Data set]. In Earth System Science Data (1.0.1, Vol. 13, Number 1, pp. 3907–3925). Zenodo. httpsdoi.org10.5281zenodo.5816591
    [23] Xiaoping Liu,Xun Liang,Xia Li,et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning,2017,168.
    [24] 吴宗洋,蔡卓雅,郭英,等. 黄河流域多源遥感土地覆被数据精度评价与一致性分析[J]. 中国生态农业学报(中英文):1-12.
    [25] 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(01):116-134.
    [26] 方精云,黄耀,朱江玲,等. 森林生态系统碳收支及其影响机制[J]. 中国基础科学,2015,17(03):20-25.
    [27] 王超越,郭先华,郭莉,等. 基于FLUS-In VEST的西北地区土地利用变化及其对碳储量的影响——以呼包鄂榆城市群为例[J]. 生态环境学报,2022,31(08):1667-1679.
    [28] 徐丽,何念鹏,于贵瑞. 2010s中国陆地生态系统碳密度数据集[J]. 中国科学数据(中英文网络版),2019,4(01):90-96.
    [29] 高亮,高永,王静,等. 土地覆盖类型对科尔沁沙地南缘土壤有机碳储量的影响[J]. 中国沙漠,2016,36(05):1357-1364.
    [30] 闫蒙,王旭洋,周立业,等. 科尔沁沙地沙漠化过程中土壤有机碳含量变化特征及影响因素[J]. 中国沙漠,2022,42(05):221-231.
    [31] 黎鹏,张勇,李夏浩祺,等. 黄土丘陵区不同退耕还林措施的土壤碳汇效应[J]. 水土保持研究,2021,28(04):29-33.
    [32] 杨阳,窦艳星,王宝荣,等. 黄土高原土壤有机碳固存机制研究进展[J]. 第四纪研究,2023,43(02):509-522.
    [33] 王鑫婧,张美玲,杨敏聪,等. 基于CENTURY模型的张掖草地土壤有机碳模拟及影响因素研究[J]. 草地学报,2023,31(04):
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:340
  • PDF: 482
  • HTML: 0
  • Cited by: 0
History
  • Received:June 09,2023
  • Revised:August 12,2023
  • Adopted:August 16,2023
  • Online: June 28,2024