Mechanical Properties of Medicago Sativa and Euphorbia Hypericifolia Root-Soil Complex
Author:
Clc Number:

TU432

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The effects of soil moisture content and root area ratio on the soil consolidation effect of Medicago sativa and Euphorbia hypericifolia root systems and the interaction mechanism of root-soil were studied in order to provide scientific basis for selecting plant species and controlling soil moisture content in ecological restoration of mines. [Methods] Wild M. sativa and E. hypericifolia were observed on a Haizhou open pit mine slope in Burin City, Liaoning Pvocince. Tests were conducted to determine the tensile properties of the root systems. The root-soil complex shear test was used to determine the optimum moisture content of the root systems of the two plants. The root-soil composite shear optimization test was conducted based on the optimal moisture content to determine the optimal root area ratio for soil consolidation efficiency. [Results] ① The tensile resistance of the root systems of the two species increased as a power function of root diameter. The tensile strength of the root systems decreased as a power function of root diameter. ② The cohesive force of the vegetative soil and the two root-soil complexes tended to increase and then decrease with increasing moisture content, and the angle of internal friction tended to decrease with increasing moisture content. ③ The M. sativa and E. hypericifolia root systems had the greatest soil consolidation effect when the moisture content was 25% and 21%, respectively. ④ At the optimal moisture content, the greatest soil consolidation efficiency was achieved when the root area ratios of the M. sativa and E. hypericifolia root systems were 0.04% and 0.08%, respectively. [Conclusion] The morphological and mechanical effects of the E. hypericifolia root system made it the superior species because of its greater soil consolidation than the M. sativa root system.

    Reference
    [1] 吴宏伟.大气-植被-土体相互作用:理论与机理[J].岩土工程学报,2017,39(1):1-47.
    [2] 周云艳,陈建平,王晓梅.植物根系固土护坡机理的研究进展及展望[J].生态环境学报,2012,21(6):1171-1177.
    [3] Ding Heng, Zhang Hong, Liu Bing, et al.Study on mechanical properties of soil stabilization by different vegetation roots on high steep slope [J].Sustainability, 2023, 15(3):2569.
    [4] 肖海,张千恒,夏振尧,等.拉拔作用下护坡植物香根草根系的力学性能[J].农业工程学报,2022,38(11):91-97.
    [5] Krairoj M, Apiniti J.Influence of root suction on tensile strength of Chrysopogon zizanioides roots and its implication on bioslope stabilization [J].Journal of Mountain Science, 2019,16(2):275-284.
    [6] Lal R.Biotechnical and soil bioengineering slope stabilization:a practical guide for erosion control [J].Soil Science, 1997,162(11):850-852.
    [7] 付江涛,杨幼清,赵吉美,等.高寒矿区采样位置和生长期及坡向对草本植物根系力学特性影响[J].草地学报,2022,30(9):2449-2459.
    [8] 刘亚斌,李淑霞,余冬梅,等.西宁盆地黄土区典型草本植物单根抗拉力学特性试验[J].农业工程学报,2018,34(15):157-166.
    [9] 朱锦奇,苏伯儒,王云琦,等.荆条根系的固土功能随土壤含水率的变化[J].林业科学,2020,56(6):202-208.
    [10] Waldron L J.The shear resistance of root-permeated homogeneous and stratified soil [J].Soil Science Society of America Journal, 1977,41(5):843-849.
    [11] Wu T H, Mickinne P, Swanston D N.Strength of tree roots and landslides on Prince of Wales Island, Alaska [J].Canadian Geotechnical Journal, 1979,16(1):19-33.
    [12] Pollen N, Simon A.Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model [J].Water Resources Research, 2005,41(7):226-244.
    [13] Schwarz M, Cohen D, Or D.Root-soil mechanical interactions during pullout and failure of root bundles [J].Journal of Geophysical Research:Earth Surface, 2010,115(F4):F04035.
    [14] 周林虎,杨幼清,胡夏嵩,等.高寒矿区排土场边坡土体抗剪强度特征[J].煤田地质与勘探,2019,47(6):144-152.
    [15] 卢海静,胡夏嵩,付江涛,等.寒旱环境植物根系增强边坡土体抗剪强度的原位剪切试验研究[J].岩石力学与工程学报,2016,35(8):1712-1721.
    [16] 朱锦奇,王云琦,王玉杰,等.基于试验与模型的根系增强抗剪强度分析[J].岩土力学,2014,35(2):449-458.
    [17] 袁亚楠,刘静,李诗文,等.小叶锦鸡儿根土界面摩阻特性及复合体抗剪强度研究[J].干旱区资源与环境,2022,36(7):173-179.
    [18] 李怡帆,张国涛,雷鸣宇,等.西南山区云南松根土复合体力学特性及其对浅层坡体稳定性的影响[J].水土保持通报,2022,42(6):88-96.
    [19] Huang Mengyuan, Sun Shujun, Feng Kaijun, et al.Effects of Neyraudia reynaudiana roots on the soil shear strength of collapsing wall in Benggang, Southeast China [J].Catena, 2022,210:105883.
    [20] 宗华,谷天峰,崔博,等.刺槐根土复合体抗剪强度试验[J].西北大学学报(自然科学版),2023,53(1):143-150.
    [21] 丰田,李光范,胡伟,等.乔木根土复合体的抗剪强度试验研究[J].应用力学学报,2018,35(3):517-523,686.
    [22] 祁兆鑫,余冬梅,刘亚斌,等.寒旱环境盐生植物根-土复合体抗剪强度影响因素试验研究[J].工程地质学报,2017,25(6):1438-1448.
    [23] Hamidifar H, Keshavarzi A, Truong P.Enhancement of river bank shear strength parameters using vetiver grass root system [J].Arabian Journal of Geosciences, 2018,11(20):1-11.
    [24] 杨锐婷,格日乐,郝需婷,等.不同类型土壤-柠条根系复合抗剪力学特性的比较[J].土壤通报,2021,52(4):821-827.
    [25] 栗岳洲,付江涛,胡夏嵩,等.土体粒径对盐生植物根-土复合体抗剪强度影响的试验研究[J].岩石力学与工程学报,2016,35(2):403-412.
    [26] 中华人民共和国住房和城乡建设部.GB/T50123-2019土工试验方法标准[S].北京:中国计划出版社,2019.
    [27] 赵丽兵,张宝贵.紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J].农业工程学报,2007,23(9):7-12.
    [28] Yang Qihong, Zhang Chaobo, Liu Pengchong, et al.The role of root morphology and pulling direction in pullout resistance of Alfalfa roots[J].Frontiers in Plant Science, 2021,12:580825.
    [29] 王晨沣,张守红,王彬,等.不同土壤前期含水量对土壤分离临界水动力学特性及其抗剪强度的影响[J].水土保持学报,2017,31(1):91-96,102.
    [30] 余凯,姚鑫,张永双,等.基于面积和应力修正的直剪试验数据分析[J].岩石力学与工程学报,2014,33(1):118-124.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

海龙,谭世林,徐博.紫花苜蓿和通奶草根土复合体的力学特性[J].水土保持通报英文版,2023,43(6):57-64

Copy
Share
Article Metrics
  • Abstract:220
  • PDF: 713
  • HTML: 0
  • Cited by: 0
History
  • Received:April 06,2023
  • Revised:May 15,2023
  • Online: January 29,2024