Temporal and spatial evolution of carbon storage in Guiyang City based on PLUS and InVEST model and multi-scenario simulation and prediction
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • | | | |
  • Comments
    Abstract:

    Abstract:[Objective]?To?clarify?the?spatio-temporal?evolution?characteristics?of?carbon?stocks?under?historical?and?future?time?series?is?of?great?significance?for?promoting?regional?sustainable?development.?[Methods]?Taking?Guiyang?City?as?an?example,?ArcGIS?was?used?to?evaluate?the?spatio-temporal?evolution?characteristics?of?land?use?change?and?carbon?storage?in?Guiyang?from?2000?to?2020,?and?coupled?with?PLUS-InVEST?model?to?predict?the?spatial?pattern?of?land?use?and?its?carbon?storage?changes?under?different?development?scenarios?in?2030.?[Results]?(1)?The?land?use?change?of?Guiyang?City?from?2000?to?2020?was?cultivated?land?and?grassland?transformed?into?water?area?construction?land;?The?cultivated?land?area?decreased?by?190km2.?The?grassland?area?decreased?by?188km2;?Water?area?increased?by?43km2;?Construction?land?area?increased?by?367km2.?(2)?From?2000?to?2020,?the?total?carbon?storage?showed?a?trend?of?first?increase?and?then?decline,?with?a?total?decrease?of?21.97×105t,?showing?a?spatial?distribution?pattern?of?higher?in?the?north?and?lower?in?the?south.?The?northern?region?is?the?main?carbon?sink?function?area?of?Guiyang?City,?and?the?expansion?of?construction?land?is?the?main?reason?for?the?decrease?of?carbon?storage.?(3)?Under?the?natural?scenario,?cultivated?land?protection?and?ecological?protection?scenarios?in?2030,?the?construction?land?will?expand?by?279km2,?193km2?and?175km2,?respectively,?with?an?increase?of?51.48%,?35.61%?and?32.29%.?(4)?The?total?carbon?storage?under?the?natural?scenario,?cultivated?land?protection?and?ecological?protection?scenarios?in?2030?is?1399.73×105t,?1398.44×105t?and?1409.55×105t,?respectively,?which?is?decreasing?compared?with?2020.?The?spatial?distribution?pattern?of?carbon?storage?is?always?high?in?the?north?and?low?in?the?south,?and?the?ecological?protection?scenario?is?more?conducive?to?slowing?down?the?decline?trend?of?carbon?storage?in?the?study?area.?[Conclusion]?In?the?future,?in?terms?of?ecological?environment,?we?can?continue?to?strengthen?the?policy?of?returning?farmland?to?forest?to?restore?the?level?of?carbon?storage,?and?in?terms?of?urban?development,?we?should?formulate?a?more?reasonable?comprehensive?development?strategy?to?take?into?account?both?economic?development?and?ecological?protection..

    Reference
    [1] 参考文献
    [2] [1] 陈美景, 王庆日, 白中科, 等. 碳中和愿景下“三生空间”转型及其碳储量效应——以贵州省为例 [J]. 中国土地科学, 2021, 35(11): 101-11.
    [3] [2] Rongyao W, Junsan Z, Yilin L, et al. Land Change Simulation and Forest Carbon Storage of Central Yunnan Urban Agglomeration, China Based on SSP-RCP Scenarios [J]. Forests, 2022, 13(12).
    [4] [3] Lei T, Yu T, Wenxue F, et al. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China [J]. Remote Sensing, 2022, 14(10).
    [5] [4] Environmental Monitoring; Researchers from Department of the Environment Discuss Findings in Environmental Monitoring (Scenario modeling for spatial-temporal change detection of carbon storage and sequestration in a forested landscape in Northern Iran) [J]. Ecology Environment & Conservation, 2018.
    [6] [5] 郭义强, 郧文聚, 黄妮, 等. 土地整理工程对土壤碳排放的影响 [J]. 土壤通报, 2016, 47(01): 36-41.
    [7] [6] 毛永发, 周启刚, 王陶, 等. 耦合PLUS-InVEST-Geodector模型的三峡库区碳储量时空变化及其定量归因 [J]. 长江流域资源与环境, 2023, 32(05): 1042-57.
    [8] [7] 张桂莲. 基于遥感估算的上海城市森林碳储量空间分布特征 [J]. 生态环境学报, 2021, 30(09): 1777-86.
    [9] [8] 曾伟生. 东北落叶松林碳储量生长模型研建及固碳能力分析 [J]. 林业资源管理, 2022, (01): 18-23.
    [10] [9] 雒舒琪, 胡晓萌, 孙媛, 等. 耦合PLUS-InVEST模型的多情景土地利用变化及其对碳储量影响 [J]. 中国生态农业学报(中英文), 2023, 31(02): 300-14.
    [11] [10] 赵胤程, 覃盟琳, 庞雅月, 等. 基于FLUS-InVEST模型的北部湾城市群生态空间碳汇演变模拟及驱动因素研究 [J]. 水土保持通报, 2022, 42(03): 345-55.
    [12] [11] 庄子薛, 谢梦晴, 张文萍, 等. 基于FLUS-InVEST模型的碳储量时空变迁及多情景模拟预测——以成德眉资地区为例 [J]. 风景园林, 2022, 29(05): 38-44.
    [13] [12] 伍丹, 朱康文, 张晟, 等. 基于PLUS模型和InVEST模型的成渝经济区碳储量演化分析 [J]. 三峡生态环境监测, 2022, 7(02): 85-96.
    [14] [13] 王超越, 郭先华, 郭莉, 等. 基于FLUS-In VEST的西北地区土地利用变化及其对碳储量的影响——以呼包鄂榆城市群为例 [J]. 生态环境学报, 2022, 31(08): 1667-79.
    [15] [14] 杨宇萍, 胡文敏, 贾冠宇, 等. 基于InVEST与ANN-CA模型的土地利用碳储量情景模拟——以环洞庭湖区为例 [J]. 南京林业大学学报(自然科学版): 1-10.
    [16] [15] 邵壮, 陈然, 赵晶, 等. 基于FLUS与InVEST模型的北京市生态系统碳储量时空演变与预测 [J]. 生态学报, 2022, 42(23): 9456-69.
    [17] [16] 朱文博, 张静静, 崔耀平, 等. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例 [J]. 地理学报, 2019, 74(03): 446-59.
    [18] [17] 牛志君, 周亚鹏, 王树涛, 等. 县域土地利用变化对碳储量的影响与评价——以黑龙港流域巨鹿县为例 [J]. 水土保持研究, 2018, 25(03): 292-7+304.
    [19] [18] 高述超, 陈毅青, 陈宗铸, 等. 海南岛森林生态系统碳储量及其空间分布特征 [J]. 生态学报, 2023, 43(09): 3558-70.
    [20] [19] 罗笑, 卢鹏. 贵州省喀斯特区土地利用变化及驱动力分析 [J]. 贵州林业科技, 2022, 50(04): 22-7.
    [21] [20] 魏媛, 吴长勇, 徐筑燕. 贵阳市土地利用变化对生态系统服务价值的影响 [J]. 贵州农业科学, 2015, 43(02): 185-8+92.
    [22] [21] 张美琪, 陈波, 赵敏. 贵州省湿地碳储量与碳中和潜力分析 [J]. 地质科技通报, 2023, 42(02): 315-26.
    [23] [22] 谭远模, 谢思梅, 谢荣安. 土地利用时空变化与城市化发展分析 [J]. 测绘通报, 2020, (04): 139-42+46.
    [24] [23] 吴楠, 陈凝, 程鹏, 等. 安徽省陆地生态系统碳储量变化对未来土地覆被情景的响应 [J]. 长江流域资源与环境, 2023, 32(02): 415-26.
    [25] [24] 李月, 罗红芬. 黔中喀斯特地区典型县域碳储量时空演变及多情景模拟预测:以普定县为例 [J]. 环境科学: 1-17.
    [26] [25] 周伟婷. 基于土地利用变化的贵阳市碳排放时空演变和空间关联 [J]. 湖北农业科学, 2023, 62(05): 8-13.
    [27] [26] 唐璐, 李娟, 王丹丹, 等. 2010—2020年贵阳市高质量发展与水资源保护利用的耦合协调关系 [J]. 水土保持通报, 2023, 43(01): 235-43+62.
    [28] [27] 景晓玮. 基于InVEST模型的贵州省生态系统服务计量及价值评估研究 [D]. 南京林业大学, 2021.
    [29] [28] 陈田田, 黄强, 王强. 基于地理探测器的喀斯特山区生态系统服务关系分异特征及驱动力解析——以贵州省为例 [J]. 生态学报, 2022, 42(17): 6959-72.
    [30] [29] 李俊, 杨德宏, 吴锋振, 等. 基于PLUS与InVEST模型的昆明市土地利用变化动态模拟与碳储量评估 [J]. 水土保持通报, 2023, 43(01): 378-87.
    [31] [30] 杨静怡, 吴峰. 贵阳市1980—2018年土地覆盖类型及碳储量变化研究 [J]. 西南林业大学学报(自然科学), 2020, 40(04): 115-21.
    [32] [31] Liang X, Guan Q, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China [J]. Computers Environment and Urban Systems, 2021, 85: 101569.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:216
  • PDF: 192
  • HTML: 0
  • Cited by: 0
History
  • Received:July 12,2023
  • Revised:November 06,2023
  • Adopted:November 07,2023
  • Online: June 27,2024