Chemical Characteristics of Surface Water and Suitability Assessment for Irrigation in the Lingjiang River Basin in Southern Zhejiang Province
Author:
Affiliation:

Changsha Natural Resources Comprehensive Survey Center of China Geological Survey,Changsha Hunan

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • | | | |
  • Comments
    Abstract:

    Abstract: The Lingjiang River Basin is an important river in the southern part of Zhejiang Province and a significant area for social and economic activities in Zhejiang. Revealing the hydrochemical characteristics of the surface water in the basin and its suitability for irrigation is of great significance for ecological protection and high-quality development in the region. This study comprehensively analyzed the hydrochemical statistics and origins of the surface water in the basin using methods such as mathematical statistics, Piper trilinear diagram, principal component analysis, and ion ratios. The irrigation suitability of the surface water in the basin was assessed through the Wilcox diagram and the USSL diagram. The results show that the hydrochemical types of the surface water in the Lingjiang River Basin exhibit zonation in spatial variation. The hydrochemical type transitions from an HCO3-Ca type in the middle-upper reaches (Zone I) to a Cl-Na type in the lower reaches and the Wenzhou-Huangyan Plain river network area (Zone II), and eventually to the Taizhou Bay estuary (Zone III). The hydrochemical composition of the basin''s surface water is influenced by natural dissolution processes and human activities. In Zone I, the hydrochemical characteristics of the surface water are mainly influenced by the dissolution of silicate rocks during rock weathering, with a lesser influence from carbonate rock dissolution. Zone I and Zone II surface waters are suitable for agricultural irrigation, mainly influenced by the dissolution of silicate rocks. In Zone III, the surface water is primarily influenced by evaporite rock dissolution, leading to poor irrigation suitability and the potential for salt-alkali damage.In Zones I and II, K+ and Na+ primarily originate from the dissolution of silicate minerals, while Ca2+, Mg2+, HCO3-, and SO42- primarily result from the dissolution of silicate rocks, with a minor contribution from carbonate rock dissolution. NO3-, on the other hand, mainly originates from human activities.

    Reference
    [1] 尚雪雪,高坛光,姚檀栋.河流二氧化碳释放研究进展[J/OL].冰川冻土. https://kns.cnki.net/kcms/detail/62.1072.P.20230315.1027.008.html
    [2] 张鸿,周权平,姜月华,等. 长江干流水化学成因与风化过程 CO2 消耗通量解析 [J]. 水文地质工程地质,2022,49(1): 30-40.
    [3] 钟桥,肖雄,张赐成,等.湘江流域岳麓山周边地区地表水体水化学特征及灌溉适宜性评价[J/OL].水土保持通报. https://doi.org/10.13961/j.cnki.stbctb.20230508.008
    [4] Barbier-Brygoo H,Vinauger M,Colcombet J,et al. Anion channels in higher plants: functional characterization,molecular structure and physiological role[J].Biochimica et Biophysica Acta ( BBA) -Biomembranes,2000,1465( 1-2) : 199-218.
    [5] Kumar M,Kumari K,Ramanathan A,et al. A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab,India [J].Environmental Geology,2007,53( 3) : 553-574.
    [6] 陈静生,王飞越,夏星辉. 长江水质地球化学[J]. 地学前缘,2006,13(1):74-85. DOI:10.321/j.issn:1005-2321.2006.01.010.
    [7] 马冰洁,张全发,李思悦.中国跨境河流水化学特征及其控制因素[J]. 第四纪研究,2023,43( 2) : 425-438.
    [8] CHEN L, WANG G C, HU F S, et al. Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, northwestern China [J]. Journal of Arid Land, 2014, 6(4): 378-388.
    [9] 吕小帅,沈小勤. 椒(灵)江流域洪潮遭遇规律分析[J]. 水力发电,2022,48(7):13-15,21. DOI:10.3969/j.issn.0559-9342.2022.07.003.
    [10] 黎伟,陈远法,沈慧珍等.浙江温黄平原地下水控采后地面沉降效应分析[J].资源调查与环境.2015.36(4).306-310.
    [11] 逄勇,王瑶瑶,胡绮玉.浙江温黄平原典型河流水质改善方案研究[J].水资源保护.2016.32(2).100-105.
    [12] 浙江省水文地质工程地质大队.仙居幅、临海幅1∶20万区域水文地质普查报告[R].1984
    [13] 浙江省区调大队.仙居幅1∶20万区域地质调查报告[R]. 杭州: 浙江省国土资源厅, 1978.
    [14] Piper A M.A graphic procedure in the geochemical interpretation of water-analyses [J]. Eos Transactions American Geophysical Union,1944,25(6):914-928
    [15] 刘敏,赵良元,李青云,等. 长江源区主要河流水化学特征、主要离子来源[J]. 中国环境科学,2021,41(3):1243-1254. DOI:10.3969/j.issn.1000-6923.2021.03.028.
    [16] Gibbs R J. Mechanisms controlling world water chemistry [J]. Science,1970,170(3962):1088-1090.
    [17] 王慧玮, 郭小娇, 张千千, 等. 滹沱河流域地下水水化学特征演化及成因分析[J].环境化学, 2021, 40(12): 3838-3845.
    [18] Zhu, B. Q., Wang, X. M., Rioual, P., 2017. Multivariate Indications between Environment and Ground Water Recharge in a Sedimentary Drainage Basin in Northwestern China. Journal of Hydrology 549(2):92-113.https://doiorg/10.1016/j.jhydrol.2017.03.058
    [19] Basak B,Alagha O. The chemical composition of rainwater over Büyükekmece Lake, Istanbul [J] Atmospheric Research 2004,71(4): 275-288.)
    [20] 刘海,宋阳,李迎春,等.长江流域安庆段浅层地下水水化学特征及控制因素[J/OL].环境科学. https://doi.org/10.13227/j.hjkx.202304087
    [21] 吕婕梅,安艳玲,吴起鑫,等. 贵州清水江流域丰水期水化学特征及离子来源分析[J]. 环境科学,2015(5):1565-1572. DOI:10.13227/j.hjkx.2015.05.008.
    [22] 刘景涛.珠江三角洲地区地下水化学演化机制及水质监测网络优化研究[D].西北大学,2020.DOI:10.27405/d.cnki.gxbdu.2020.002275.
    [23] 马莲净, 赵宝峰, 吕玉广, 等. 煤矿矿井水水化学形成作用与灌溉适宜性评价[J]. 环境化学, 2023, 42(11): 1-10.
    [24] SEN Z. Practical and Applied Hydrogeology[M]. Elsevier, 2015.
    [25] 季雨桐. 沙柳河流域河水和地下水水化学特征及水质评价研究[D]. 青海:青海师范大学,2021.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:156
  • PDF: 592
  • HTML: 0
  • Cited by: 0
History
  • Received:July 22,2023
  • Revised:August 30,2023
  • Adopted:September 04,2023
  • Online: December 05,2023