• Article
  • | |
  • Metrics
  • |
  • Reference [53]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Objective] This study aims to investigate the improvement effect of cellulose-based soil amendments prepared from corn cob and humic acid on the erosion resistance of sandy soil. [Methods] One or two mixtures of laccase and lignin peroxidase, three enzyme activity gradient levels, two corn cob addition masses, and a fixed amount of humic acid, were set to synthesize cellulose-based soil amendments through an aqueous solution polymerization method. Meantime, the characteristics of enzymatic hydrolysis products and functional groups of amendments were performed using infrared spectroscopy. The water retention capacity and network characteristics of the amendments were analyzed based on their swelling characteristics. In addition, the improvement effect of amendments on the erosion resistance of sandy soil was also evaluated based on the parameters related to mechanical and water stable aggregates. [Results] (1) The water absorbency of the cellulose-based soil amendments was about 0.61-4.84 times that of pure humic acid based amendments. In which, the soil amendment prepared by adding 4 g of enzymatic hydrolysis products of laccase (20 U) and lignin peroxidase (20 U) hydrolysate, had the highest water absorbency with a value of 66.7 g/g. The swelling process of the soil amendment corresponded to Schott''s second-order kinetic model. (2) Compared to the control group (CK) , the addition of 1% amendments (Lac3-4, Lip3-4 and LLP3-4) synthesized by the three different enzymatic hydrolysis schemes increased the soil saturated water content by 20%-60%. LLP3-4 can increase the content of mechanical large aggregates and water stable large aggregates (>0.25 mm) by 6.15 and 14 times, increase the average weight diameter and geometric average diameter of soil by 45% and 46.67%, and reduce the fractal dimension by 21.36%, respectively. [Conclusion] Cellulose-based soil amendments prepared by dual enzyme pretreatment scheme can significantly enhance the water retention capacity and corrosion resistance of sandy soil.

    Reference
    [1] 马剑平,张元恺,张雯等.封沙禁牧生态效益及其亟待解决的问题研究进展[J].生态科学,2023,42(02):248-256.
    [2] 昝国盛,王翠萍,李锋等.第六次全国荒漠化和沙化调查主要结果及分析[J].林业资源管理,2023(01):1-7.
    [3] 张哲超,杨久扬,郝百惠等.微生物群落驱动AM真菌、生物炭及联合改良沙化土壤作用潜力[J].环境科学,2021,42(04):2066-2079.
    [4] Kayan ? G,Kayan A. Composite of Natural Polymers and Their Adsorbent Properties on the Dyes and Heavy Metal Ions[J].Journal of Polymers and the Environment,2021,29(11).1-20.
    [5] Chio C,Sain M,Qin W. Lignin utilization: A review of lignin depolymerization from various aspects[J].Renewable and Sustainable Energy Reviews,2019,107: 232-249.
    [6] 黄丹莲,曾光明,黄国和等.白腐菌的研究现状及其在堆肥中的应用展望[J].微生物学通报,2004(02):112-116.
    [7] Zhang, ST, Dong, ZJ, et al. Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase.[J]. Bioresource technology,2022,361:115–129.
    [8] 周佳丽. 基于玉米秸秆的纸复合纤维素晶胶制备功能保水地膜的研究[D].云南 昆明:昆明理工大学,2020.
    [9] 杨涛,马美湖.纤维素类物质生产酒精的研究进展[J].中国酿造,2006(08):11-15.
    [10] 黄青盈,吕嘉昕,何秋愉等.纤维素降解菌种的筛选测定及其对秸秆的降解[J].复旦学报(自然科学版),2022,61(01):34-42.
    [11] 邱卫华,陈洪章.木质素的结构、功能及高值化利用[J].纤维素科学与技术,2006(01):52-59.
    [12] 宋彬,孙茹茹,梁宏旭等.添加木质素和生物炭对土壤氮、磷养分及水分损失的影响[J].水土保持学报,2019,33(06):227-232+241.
    [13] 张钰舒,吴红慧,柯玉广等.保水剂与木质素结皮相结合对沙化土地植被恢复的调控机理[J].水土保持通报,2021,41(02):142-148.
    [14] LEKHA B M, SARANG G, et al. Effect of electrolyte lignin and fly ash in stabilizing black cotton soil[J]. Transportation Infrastructure Geotechnology,2015,2(2):87-101.
    [15] 钱爽,任浩.木质素-聚丙烯酸钠高吸水树脂的制备及性能[J].林产化学与工业,2018,38(02):21-28.
    [16] 王丹.纤维素改性耐盐性高吸水树脂的合成及性能研究[D].北京:中国林业科学研究院,2006.
    [17] 韦武思. 秸秆改良材料对沙质土壤结构和水分特征的影响[D].重庆:西南大学,2010.
    [18] 朱显谟.重建土壤水库是黄土高原治本之道[J].中国科学院院刊,2006(04):320-324.
    [19] 高维森,王佑民.土壤抗蚀抗冲性研究综述[J].水土保持通报,1992(05):59-63.
    [20] Zhang, ST, Xiao, JL,et al.Enzymatic hydrolysis of lignin by ligninolytic enzymes and analysis of the hydrolyzed lignin products[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2020,304:100-106.
    [21] 王昱程,张玉斌,邬乃鹏等.腐植酸-纤维素复合农林保水剂的制备及性能[J].水土保持通报,2014,34(02):134-138.
    [22] 杨军,康玉茹,张传卫等.高聚物对黄绵土的改良研究[J].土壤通报,2005(02):274-276.
    [23] 刘亚龙,王萍,汪景宽.土壤团聚体的形成和稳定机制:研究进展与展望[J].土壤学报,2023,60(03):627-643.
    [24] 师学珍,王增丽,冯浩.秸秆不同处理方式对黄绵土团聚体特性的影响[J].中国土壤与肥料,2014(04):12-17.
    [25] 纪冰祎,赵驰鹏,吴玥等.连续失水-复水中不同粒径保水剂对土壤结构和水分特性的影响[J].水土保持学报,2021,35(05):375-383.
    [26] TOTSCHE KAI UWE, et al. Microaggregates in soils[J]. Journal of plant nutrition and soil science,2018,181(1):104-136.
    [27] 李新平,张力,常慧等.纤维素骨架支撑的高吸水性树脂的制备及性能研究[J].中国造纸,2021,40(02):1-12.
    [28] 聂天宏,杨兴,李永春等.高分子材料在土壤物理性质改良方面的研究进展[J].土壤通报,2020,51(06):1504-1512.
    [29] . Yanli Ma, Ling Lyu, et al.Nanotechnology - Nanocomposites; Studies from Northeast Forestry University Describe New Findings in Nanocomposites (Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions)[J].Nanotechnology Weekly, Volume , Issue.2017.890-930.
    [30] 文小莉,韩卿.生物技术在制浆与漂白过程应用的研究进展[J].黑龙江造纸,2012,40(01):41-45.
    [31] Qiu W,Zhang W,Chen H. Natural laccase mediators separated from water-washed solution of steam exploded corn straw by nanofiltration and organic solvent fractionation[J].Bioresource Technology,2014,156:368-371.
    [32] 袁颖红,黄静,周际海等.改良剂对旱地红壤水分特征和作物产量的影响[J].水土保持学报,2016,30(01):171-177.
    [33] 李鑫,王子儒,赵冬冬等.HA-PAA-CMC高吸水性树脂的制备及性能[J].工程塑料应用,2018,46(07):24-30.
    [34] Kumar A, Saha A. Effect of polyacrylamide and gypsum on surface runoff, sediment yield and nutrient losses from steep slopes[J]. Agricultural Water Management,2011,98(6):999-1004.
    [35] 吴宏海,胡勇有,黎淑平.有机酸与矿物间界面作用研究评述[J].岩石矿物学杂志,2001(04):399-404.
    [36] 洪华阳,魏天齐,周红梅等.修复连作大蒜土壤生产力衰退的有机质补偿方案与初步机理[J/OL].土壤学报,2023,01(09)1-13.
    [37] 叶露萍,谭文峰,方临川等.基于地统计学的土壤团聚体空间变异研究进展[J].中国水土保持科学,2019,17(02):146-153.
    [38] 张钦弟,刘剑荣,杨磊等.半干旱黄土区植被恢复对土壤团聚体稳定性及抗侵蚀能力的影响[J].生态学报,2022,42(22):9057-9068.
    [39] 李婧,李占斌,李鹏等. 黄土高原丘陵沟壑区退耕生态系统土壤水分动态变化规律研究[J].水土保持研究,2009,16(5):153-156.
    [40] 汤泽辉,吕铭,丁诚等.外源有机碳对滩涂盐碱地土壤团聚体形成的影响[J].扬州大学学报(农业与生命科学版),2021,42(02):122-128.
    [41] MA YL,SUN Y J FU Y J et al.Swelling behaviors of porous lignin based poly acrylic acid[J].Chemosphere,2016,163:610-619.
    [42] 李婷,朱立安,林梓等. 土壤改良剂(CMC)在新垦耕地土壤改良中的应用[J].中国农学通报,2023,39(21):88-93.
    [43] 李建法.新型高分子沙土稳定材料的研制与应用[D].北京:中国林业科学研究院,2003.
    [44] 周恩全,居东煜,崔磊等.木质素改良粉土无侧限抗压强度特性[J].江苏大学学报(自然科学版),2023,44(05):614-620.
    [45] 程思远,李欢,梅慧玲等.接种蚯蚓与添加有机物料对茶园土壤结构的影响[J].土壤学报,2021,58(01):259-268.
    [46] 马丽,刘鹏,黄天志.高寒草地沙化过程对土壤结构及养分的影响[J].环境生态学,2022,4(09):32-38.
    [47] 李昊,程冬兵,孙宝洋等.海藻多糖抗蚀剂对土壤抗剪与入渗特性的影响[J].农业工程学报,2020,36(22):144-150.
    [48] 范家伟,朱广宇,上官周平等.黄土丘陵区刺槐林土壤团聚体稳定性和土壤可蚀性动态变化[J].水土保持学报,2023,37(03):19-26.
    [49] Niu J Y, Li X F, et al.Pathway analysis of the biodegradation of lignin by Brevibacillus thermoruber [J].Bioresource Technology,2021,341:98-104.
    [50] 张斯妤,闫子壮,陈云敏等.盐溶液侵蚀下砂-膨润土混合土化学固结行为研究[J].地基处理,2022,4(03):181-189.
    [51] 周明星,樊军,王茜等.免耕覆盖与生物炭对黑垆土团聚体稳定性和腐殖质性质的影响[J].植物营养与肥料学报,2023,29(05):848-859.
    [52] Lin Y,Munroe P,Joseph S,et al.Nanoscale organo-mineral reactions of biochars in ferrosol: An investiga-tion using microscopy[J].Plant and Soil,2012,357(1/2):369-380.
    [53] Zeinab H, Ghasem D N, Nima L, et al. Synthesis of abiopolymer via a novel strain of pantoea as a soil stabilizer[J].Transportation Geotechnics,2021,26:100-142.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 23,2023
  • Revised:November 17,2023
  • Adopted:November 22,2023
  • Online: June 27,2024