• Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    Abstract:[Objective] To support building a low-carbon agricultural model, promoting agricultural carbon reduction and high-quality regional agriculture development. [Methods] The estimation model of carbon emission from cultivated land and ArcGIS calculation were used to analyze the temporal and spatial characteristics of carbon emission from cultivated land in the urban belt along the Yellow River in Ningxia, and the unexpected output super-efficiency model (SBM) was used to evaluate the ecological efficiency of cultivated land. [Results] (1) The total carbon emission of cultivated land in the urban belt along the Yellow River in Ningxia showed an overall downward trend from 2011 to 2020, and chemical fertilizer and agricultural diesel were the primary sources of carbon emission from cultivated land. (2) The carbon emission of cultivated land in the urban belt along the Yellow River in Ningxia shows a spatial distribution pattern of high in the north-south and low in the middle. Pingluo County and Zhongning County are the largest cultivated land carbon emission cities. (3) The trend of carbon emission intensity of cultivated land in the urban belt along the Yellow River in Ningxia is similar to that of cultivated land. (4) The ecological efficiency of cultivated land use in the urban belt along the Yellow River in Ningxia fluctuates as a whole, and the ecological efficiency of cultivated land in the Litong area is low, so it is necessary to adjust the input factors in the agricultural production process. [Conclusion] To study the temporal and spatial evolution characteristics of carbon emission and ecological efficiency of cultivated land in the urban belt along the Yellow River in Ningxia and explore their key influencing factors. The relevant conclusions can provide a reference for the construction of low-carbon agriculture and accurate policy implementation in Ningxia.

    Reference
    [1] Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture 2016: Climate Change, Agriculture and Food Security. Rome, Italy: FAO, 2016
    [2] 徐玥,王辉,韩秋凤,等.我国耕地碳排放时空特征与影响因素[J].江苏农业科学,2022,50(16):218-226.
    [3] 苑韶峰,唐奕钰.低碳视角下长江经济带土地利用碳排放的空间分异[J].经济地理,2019,39(02):190-198.
    [4] 朱向梅,王子莎.黄河流域碳水足迹评价及时空格局研究[J].环境科学与技术,2020,43(10):200-211.
    [5] 徐影,郭楠,茹凯丽等.碳中和视角下福建省国土空间分区特征与优化策略[J].应用生态学报,2022,33(02):500-508.
    [6] 陈舜,逯非,王效科.中国氮磷钾肥制造温室气体排放系数的估算[J].生态学报,2015,35(19):6371-6383.
    [7] 杭晓宁,张健,胡留杰等.2006—2015年重庆市农田生态系统碳足迹分析[J].湖南农业大学学报(自然科学版),2018,44(05):524-531.
    [8] EGGLESTON H S,BUENDIA L,MIWA K, et al. 2006 IPCC guile lines for national greenhouse gas inventories[M].Kanagawa: Institute for Global Environmental Strategies,2006
    [9] 张学智,王继岩,张藤丽等.中国农业系统甲烷排放量评估及低碳措施[J].环境科学与技术,2021,44(03):200-208.
    [10] 禹康康,王延华,孙恬等.太湖流域土地利用碳排放变化及其预测[J].土壤,2022,54(02):406-414.
    [11] 冉锦成,马惠兰,苏洋.西北五省农业碳排放测算及碳减排潜力研究[J].江西农业大学学报,2017,39(03):623-632.
    [12] 凡雨宸.基于GIS-GWR的湖南省土地利用碳排放时空演变及其影响因素分析[D].湖南工业大学,2020.
    [13] 盖兆雪,詹汶羲,王洪彦等.耕地利用转型碳排放时空分异特征与形成机理研究[J].农业机械学报,2022,53(07):187-196.
    [14] 杨青林,赵荣钦,赵涛等.县域尺度农业碳排放效率与粮食安全的关系[J/OL].中国农业资源与区划,2022,1-17.
    [15] WANG K, Zhang P. The research on impact factors and characteristic of cultivated land resources use efficiency—Take Henan Province, China as a case study[J]. IERI Procedia, 2013, (05)2-9.
    [16] 梁流涛,曲福田,王春华.基于DEA方法的耕地利用效率分析[J].长江流域资源与环境,2008, (02):242-246.
    [17] YANG C H, WU L A, LIN H L. Analysis of total-factor cultivated land efficiency in China’s agriculture[J]. Agricultural Economics, 2010,56 (5): 231-242.
    [18] 刘玉海,武鹏.转型时期中国农业全要素耕地利用效率及其影响因素分析[J].金融研究,2011,(07):114-127.
    [19] 吴昊玥,孟越,黄瀚蛟等.中国耕地低碳利用绩效测算与时空分异[J].自然资源学报,2022,37(05):1148-1163. [
    [20] 马林燕,张仁慧,潘子纯等.中国省际耕地利用生态效率时空格局演变及影响因素分析—基于2000—2019年面板数据[J].中国土地科学,2022,36(03):74-85.
    [21] 冀正欣,王秀丽,李玲等.许月卿.南阳盆地区耕地利用效率演变及其影响因素[J].自然资源学报,2021,36(03):688-701.
    [22] 吴欣,刘仕鑫,赵立燕等.黄河流域耕地利用效率评估及其提升路径研究[J].农业现代化研究,2022,43(04):702-714.
    [23] 臧俊梅,唐春云,王秋香等.基于Super-SBM模型的广东省耕地利用效率空间非均衡性及影响因素研究[J].中国土地科学,2021,35(10):64-74.
    [24] 宋强敏,孙才志,盖美.基于非期望超效率模型的辽宁沿海地区海洋生态效率测算及影响因素分析[J].海洋通报,2019,38(05):508-518.
    [25] 杜天洋,烁雅,蔡紫娟.基于非期望产出SBM的区域生态效率实证研究[J].经济研究导刊,2019(19):62-64+77.
    [26] 宋永永,米文宝,杨丽娜等.宁夏沿黄经济区农业发展与空间布局研究[J].生态科学,2015,34(02):116-122.
    [27] 马彩虹,安斯文,滑雨琪等.宁夏沿黄经济带生态用地格局演变及其驱动机制[J].经济地理,2022,42(06):179-187.
    [28] 李波,张俊飚,李海鹏.中国农业碳排放时空特征及影响因素分解[J].中国人口·资源与环境,2011,21(08):80-86. [
    [29] 李孝忠,李佳辰,李东.低碳经济视域下黑龙江省农业现代化水平综合评价[J].农业经济与管理,2020(06):33-42.
    [30] 邱子健,靳红梅,高南等.江苏省农业碳排放时序特征与趋势预测[J].农业环境科学学报,2022,41(03):658-669.
    [31] 张金梦.优化核算方法提升碳数据质量[N].中国能源报,2022-03-21(019).
    [32] 叶文伟,王城城,赵从举等.近20年海南岛热带农田生态系统碳足迹时空格局演变[J].中国农业资源与区划,2021,42(10):114-126.
    [33] AYRES R U. Towards a Zero-emissions Economy[J].Environmental Science and Technology,1998,32(15 ):366-367.
    [34] 文高辉,胡冉再琪,唐璇等.洞庭湖区耕地利用碳排放与生态效率时空特征[J].生态经济,2022,38(07):132-138. [WEN G H,
    [35] 成刚. 数据包络分析方法与 MaxDEA 软件[M]. 知识产权出版社, 2014.
    [36] 张小红,陶红,王亚娟等.银川市农田土壤中四环素类抗生素的污染特征及生态风险评估[J].环境科学,2021,42(10):4933-4941.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 09,2023
  • Revised:December 11,2023
  • Adopted:December 11,2023
  • Online: June 27,2024