Effects of different sea buckthorn plantation patterns on soil aggregate sta-bility and organic carbon recovery in quasi-energy open-pit mine
Affiliation:

1.Xi'2.'3.an University of Science and Technology

  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • | | | |
  • Comments
    Abstract:

    [Objective] The coal mining process also causes a series of ecological and environmental problems such as the reduction of biodiversity, the destruction of soil structure and the loss of nutrients. The severe disturbance to the soil structure in the mining area results in the exposure of organic carbon protected by soil aggregates, which is de-composed and mineralized by soil microorganisms, resulting in the loss of soil organic carbon. Vegetation recon-struction in disturbed open pit dump is considered to be an effective measure to improve soil structure and increase biodiversity. In recent years, microbial restoration technology (arbuscular mycorrhizal fungi) has been widely used in ecological restoration of mining areas, and has achieved obvious ecological improvement effect. In addition, exogenous substances such as weathered coal and green fertilizer are also considered to have a positive role in soil improvement. However, the effect of arbuscular mycorrhizal fungi combined with weathering coal and green fertilizer on vegetation growth and soil improvement is still unclear. [Methods] Therefore, based on the sea buckthorns demonstration base in the open pit of Hedaigou, Inner Mongolia, this study analyzed the effects of the combined action of fertilizer modes such as arbuscular mycorrhizal fungi (AMF) and other factors (weathered coal and green fertilizer) on the stability of soil aggregates and organic carbon recovery in the early vegetation resto-ration area of the open pit dump by investigating vegetation populations and collecting soil aggregate samples. [Result] The results showed that under the six treatment modes, the experimental group inoculated with AMF, applied green fertilizer and added weathered coal (sand and green wind) had the best effect on the improvement of understory vegetation diversity, and the diversity index was significantly improved compared with the control treatment. The experimental group inoculated with AMF and applied with green fertilizer (sand green) had the most significant effect on the development and stability of aggregates. The crushing rate of the experimental group was significantly lower than that of the control group, while the mean diameter of aggregate weight and geometric mean diameter were significantly higher than that of the control group. The analysis of the effect of organic carbon and total nitrogen in aggregates showed that the organic carbon and total nitrogen in aggregates treated with sand green were significantly higher than those in the experimental group inoculated only with AMF (sand grafting). [Con-clusion]:Overall, these results evaluated the effects of weathering coal, green fertilizer and AMF inoculation on improving vegetation diversity, aggregate stability and aggregate organic carbon recovery in field trials, and had important reference significance for optimizing artificial ecological restoration strategies in open-pit mines and accelerating soil carbon pool recovery.

    Reference
    [1] 陈涛, 周利军, 齐实,等. 华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力[J]. 浙江农林大学学报, 2021.
    [2] 安韶山. 黄土丘陵区土壤肥力质量对植被恢复的响应及其演变[J]. 西北农林科技大学, 2004.
    [3] 王国强, 毛艳玲. 土地利用方式对土壤团聚体组成及质量的影响[J]. 林业科技开发, 2008.
    [4] 陈盈. 长期施肥对土壤团聚体中碳水化合物分布特征的影响[J]. 沈阳应用生态研究所, 2007.
    [5] 陈盈. 长期施肥对土壤团聚体中碳水化合物分布特征的影响[J]. 沈阳应用生态研究所, 2007.
    [6] 黄悦张风宝高晶霞申楠杨明义. 基于高能水分特性法的土壤团聚体结构稳定性研究进展[J]. 水土保持研究, 2022, 29(6):431-437.
    [7] 苏芳莉, 赵光辉, 王铁良, et al. 不同土地利用方式下表层土壤大团聚体特征[J]. 草业科学, 2017, 34(5):8.
    [8] 张童, 刘宇飞, 隋心,等. 土地利用方式对黑龙江西部地区土壤理化性质和酶活性的影响[J]. 农学学报, 2021, 11(5):9.
    [9] 赵爽, 王邵军, 杨波,等. 接种丛枝菌根真菌对云南石漠化土壤呼吸的影响[J]. 生态学报, 2022, 42(21):9.
    [10] 李娟, 魏甲彬, 杨宁. 土地利用变化对土壤有机质影响的研究进展及展望[J]. 湖南环境生物职业技术学院学报, 2022(003):009.
    [11] 惠超, 杨卫君, 宋世龙,等. 生物炭施用对麦田土壤团聚体机械稳定性及春小麦产量的影响[J]. 土壤通报, 2022(002):053.
    [12] 宋日, 刘利, 马丽艳,等. 作物根系分泌物对土壤团聚体大小及其稳定性的影响[J]. 南京农业大学学报, 2009, 32(3):5.
    [13] 王杰. 不同类型土壤斥水性及其对坡面侵蚀影响[D]. 华中农业大学, 2017.
    [14] 袁俊吉, 蒋先军, 胡宇,等. 不同植被覆盖对养分在土壤水稳性团聚体中分布特征的影响[J]. 水土保持学报, 2009(6):7.
    [15] 左明雪、孙杰、徐如玉、袁银龙、顾文杰、卢钰升、徐培智、解开治. 丛枝菌根真菌与有机肥配施对甜玉米根际土壤氮素转化及氮循环微生物功能基因的影响[J]. 福建农业学报, 2020, 35(9):14.
    [16] 吴强盛. 丛枝菌根真菌对柑橘抗旱性的作用及其机理研究. 华中农业大学, 2006.
    [17] 杨秀梅. 丛枝菌根真菌对铅锌尾矿植被恢复作用的试验研究[D]. 北京林业大学, 2008.
    [18] 刘惠欣, 张俊英, 李富平. 丛植菌根在尾矿废弃地生态恢复中的试验研究[J]. 中国农学通报, 2012, 28(14):5.
    [19] 曲跃军, 杜人杰, 张翼. 丛枝菌根真菌对植物病原菌的生物防治作用[J]. 园艺与种苗, 2021, 000(007):35-37.
    [20] 杨文亭, 冯远娇, 王建武. 丛枝菌根真菌在寄主植物抵御生物和非生物胁迫中的作用[J]. 生态科学, 2008.
    [21] 毕银丽, 吴王燕, 全文智. 提高矿区复垦效果的丛枝菌根菌剂培养方法:, CN101012440[P].
    [22] 刘惠欣, 张俊英, 李富平. 丛植菌根在尾矿废弃地生态恢复中的试验研究[J]. 中国农学通报, 2012, 28(14):5.
    [23] 钱奎梅. 煤炭矿区复垦土壤的菌根修复技术研究[D]. 中国矿业大学.
    [24] 冯乐, 宋福强. 外生菌根真菌与丝状真菌混合对红松凋落物降解效能的影响[J]. 生态科学, 2011, 30(3):6.
    [25] 毕银丽, 薛子可. 丛枝菌根真菌提高植物高温胁迫抗逆性及在矿区生态修复应用展望[J]. 中国科学基金, 2021, 35(6):7.
    [26] 孙吉庆, 刘润进, 李敏. 丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展[J]. 植物生理学报, 2012, 48(9):8.
    [27] 曹际玲, 冯有智, 林先贵,等. 丛枝菌根真菌对纳米氧化铁的生物效应的影响[C]// 全国环境微生物学学术研讨会. 2015.
    [28] 陈琪. 丛枝菌根真菌对入侵克隆植物生长及抗病性的影响研究[D]. 江苏大学.
    [29] 王小坤, 郭绍霞, 李敏,等. 丛枝菌根真菌提高植物抗病性的分子机制[J]. 青岛农业大学学报(自然科学版), 2012, 29(3).
    [30] 钟思远, 张静, 褚国伟,等. 沿海侵蚀台地不同恢复阶段土壤团聚体组成及其与丛枝菌根真菌的关系[J]. 生态环境学报, 2017, 26(2):8.
    [31] 杨振亚, 阙弘, 朱雪竹,等. 几种丛枝菌根真菌对菲污染土壤中球囊霉素含量的影响[J]. 农业环境科学学报, 2016, 35(7):6.
    [32] 许加, 唐明. 铅锌矿污染区不同林木根际丛枝菌根真菌与土壤因子的关系[J]. 西北农林科技大学学报(自然科学版), 2013, 41(5):75-80.
    [33] Jing, Z., Cheng, J., Chen, A., 2013. Assessment of vegetative ecological characteristics and the succession process during three decades of grazing exclusion in a continental steppe grassland. Ecological Engineering 57, 162–169.
    [34] Bach, E.M., Hofmockel, K.S., 2014. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity. Soil Biology and Biochemistry 69, 54–62.
    [35] 谢翔宇. 丛枝菌根真菌在秋茄磷营养与抗镉胁迫中的生理生态功能[D]. 2012.
    [36] 李凤明, 丁鑫品, 白国良, et al. 高原高寒露井联合矿区生态地质环境综合治理模式[J]. 煤炭学报, 2021, 46(12):4033-4044.
    [37] 邢丹. 石漠化地区丛枝菌根真菌促进桑树根系水分吸收的机理研究[D]. 贵州大学.
    [38] 彭思利, 申鸿, 袁俊吉,等. 分根装置中接种AMF对1~2mm土壤水稳性团聚体的影响[J]. 植物营养与肥料学报, 2010(6):5.
    [39] Fulton‐Smith, S., Cotrufo, M.F., 2019. Pathways of soil organic matter formation from above and belowground inputs in a Sorghum bicolor bioenergy crop. GCB Bioenergy 11, 971–987. doi:10.1111/gcbb.12598
    [40] Tamura, M., Suseela, V., Simpson, M., Powell, B., Tharayil, N., 2017. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems. Global Change Biology 23, 4002–4018. doi:10.1111/gcb.13751
    [41] Yudina, A.V., Fomin, D.S., Kotelnikova, A.D., Milanovskii, E.Y., 2018. From the Notion of Elementary Soil Particle to the Particle-Size and Microaggregate-Size Distribution Analyses: A Review 51, 23.
    [42] Zhao, Y., Naeth, M.A., 2022. Soil amendment with a humic substance and arbuscular mycorrhizal Fungi enhance coal mine reclamation. Science of The Total Environment 823, 153696. doi:10.1016/j.scitotenv.2022.153696
    [43] Gao, F., Cui, X., Sang, Y., Song, J., 2020. Changes in soil organic carbon and total nitrogen as affected by primary forest conversion. Forest Ecology and Management 463, 118013. doi:10.1016/j.foreco.2020.118013.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:41
  • PDF: 177
  • HTML: 0
  • Cited by: 0
History
  • Received:October 23,2023
  • Revised:January 02,2024
  • Adopted:January 04,2024