• Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • | | | |
  • Comments
    Abstract:

    [Objective] To In order to better monitor and evaluate the ecological quality of hilly areas, it is necessary to construct a accurate remote sensing ecological index of middle and high vegetation areas, and explore the influencing factors of its ecological quality, so as to provide scientific support for the balance between development and ecology in Taojiang County. [Method] To address the saturation issue of the Normalized Difference Vegetation Index (NDVI) in densely vegetated areas, this study introduces the kernel Normalized Difference Vegetation Index (kNDVI) and integrates it with humidity, dryness, and heat factors to formulate a Modified Remote Sensing Ecology Index (MRSEI). Utilizing this index, the ecological environment quality and its temporal variation in Taojiang County from 2000 to 2021 were quantified. Additionally, a parameter optimized geographic detector model was employed to analyze the driving forces of six influencing factors, including vegetation coverage, precipitation, temperature, land use, altitude, and population density. [Result] (1) Compared with the RSEI model, the MRSEI model can effectively address the issue of NDVI saturation in areas with high vegetation cover, enabling a more precise monitoring of the ecological environment in Taojiang County; (2) The average RSEI values for the five periods from 2000 to 2021 in the study area were 0.77, 0.84, 0.83, 0.75 and 0.79, respectively, indicating a satisfactory performance in ecological environment quality with a trend of improvement-deterioration-improvement; (3) From the analysis of the factors influencing ecological environment quality, land use emerges as a key factor determinant in the study area. In the factor interactive detection analysis, the interaction between land use and elevation were strongest. [Conclusion] In summary, variation of the ecological environment quality in Taojiang County is primarily influenced by a combination of natural and anthropogenic factors. The research results can provide technical reference for carrying out effective ecological environment protection and restoration measures in Taojiang County.

    Reference
    [1] 吴能杰.益阳市矿山地质环境保护与恢复治理研究[J].世界有色金属, 2020(13): 189-191.
    [2] 徐涵秋.城市遥感生态指数的创建及其应用[J].生态学报,2013,33(24):7853-7862.
    [3] 张伟,杜培军,郭山川等.改进型遥感生态指数及干旱区生态环境评价[J].遥感学报,2023,27(02):299-317.
    [4] 李晶,李生财,郭伟等.基于改进遥感生态指数的山西省及煤炭矿区生态环境分析[J].金属矿山,2023(01):30-39.DOI:10.19614/j.cnki.jsks.202301004.
    [5] Camps-Valls G,Campos-Taberner M,Moreno-Martinez A,et al.A unified vegetation index for quantifying the terrestrial biosphere.Science4dvances,2021,7:eabc7447
    [6] Noel G, Matt H, Mike D, et al.Google Earth Engine: Planetary-scale geospatial analysis for everyone[J].Remote Sensing of Envi-ronment, 2017, 202: 18-27.
    [7] 汪孝贤, 张秀霞, 李旺平等.基于遥感生态指数(RSEI)改进模型的祁连山国家级自然保护区生态环境质量评价[J/OL].生态与农村环境学报: 1-16[2023-05-06].DOI: 10.19741/j.issn.1673-4831.2022.1054.
    [8] 李茂林, 闫庆武, 李桂娥.基于EVI的锡林郭勒生态脆弱性评价[J].测绘通报, 2022(10): 21-27.DOI: 10.13474/j.cnki.11-2246.2022.0289.
    [9] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报, 2005(05): 589-595.
    [10] Samuel N. Goward, 曾晓梅.卫星生物气候学研究[J].气象科技, 1990(02): 33-38.DOI: 10.19517/j.1671-6345.1990.02.006.
    [11] 赵桔超, 朱彦辉, 段国辉等.基于MOD13Q1数据分析2001—2015年西双版纳植被变化特征[J].生态学杂志, 2019, 38(04): 1083-1092.DOI: 10.13292/j.1000-4890.201904.016.
    [12] 白燕英, 高聚林, 张宝林.基于NDVI与EVI的作物长势监测研究[J].农业机械学报, 2019, 50(09): 153-161.
    [13] 周家香, 朱建军, 左廷英.IKONOS图像的缨帽变换方法[J].矿山测量, 2006(01): 13-14+50+4.
    [14] Huang C, Wylie B, Yang L, et al.Derivation of a tasselled captransformation based on Landsat7 at-satellite reflectance[J].In-ternational Journal of Remote Sensing, 2002, 23(8): 1741-1748.
    [15] Crist, E.P., 1985.A TM Tasseled Cap equivalent transformation for re?ectance factordata. Rem. Sens. Environ.17, 301e306.
    [16] Rikimaru A, Roy P S, Miyatake S.Tropical forest cover densitymapping[J].Tropical Ecology, 2002, 43(1): 39-47.
    [17] 徐涵秋.一种快速提取不透水面的新型遥感指数[J].武汉大学学报(信息科学版), 2008(11): 1150-1153+1211.
    [18] 王劲峰, 徐成东.地理探测器: 原理与展望[J].地理学报, 2017, 72(01): 116-134.
    [19] Badglev G Field BC.Berry A.Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances,2017,3:el602244
    [20] 张华, 宋金岳, 李明等.基于GEE的祁连山国家公园生态环境质量评价及成因分析[J].生态学杂志, 2021, 40(06): 1883-1894.DOI: 10.13292/j.1000-4890.202106.034.
    [21] Ye X , Kuang H .Evaluation of ecological quality in southeast Chongqing based on modified remote sensing ecological index[J].Scientific Reports[2023-08-06].DOI: 10.1038/s41598-022-19851-9.
    [22] GD: https: //cran.r-project.org/web/packages/GD/GD.pdf.
    [23] GD.Vignettes: https: //cran.r-project.org/web/packages/GD/vignettes/GD.html.
    [24] 数据分类方法: https://pro.arcgis.com/zh-cn/pro-app/latest/help/mapping/layer-properties/data-classification-methods.htm.
    [25] 张伟, 杜培军, 郭山川等.改进型遥感生态指数及干旱区生态环境评价[J].遥感学报, 2023, 27(02): 299-317.
    [26] 邓楚雄,郭方圆,黄栋良等.基于INVEST模型的洞庭湖区土地利用景观格局对生境质量的影响研究[J].生态科学,2021,40(02):99-109.DOI:10.14108/j.cnki.1008-8873.2021.02.013.
    [27] 刘笑,郭鹏,祁佳峰等.基于MRSEI模型的阿勒泰市生态环境时空变化及驱动力分析[J].干旱区研究,2023,40(06):1014-1026.DOI:10.13866/j.azr.2023.06.16.
    [28] 施智勇, 胡晓婷, 谢慧黎等.基于RSEI的生态环境质量评价及驱动力分析——以闽江流域(福州段)为例[J].测绘通报, 2023(02): 28-33.DOI: 10.13474/j.cnki.11-2246.2023.0036.
    [29] 梁巧玲, 史正涛, 陈越豪等.基于遥感生态指数的元谋干热河谷生态环境动态监测及其驱动力分析[J].水土保持通报, 2022, 42(06): 146-154+181.DOI: 10.13961/j.cnki.stbctb.20220929.002.
    [30] 吕晨, 蓝修婷, 孙威.地理探测器方法下北京市人口空间格局变化与自然因素的关系研究[J].自然资源学报, 2017, 32(8);1385-1397.
    [31] 杨华,纪千夫,宋启迪等.基于MODIS数据的洞庭湖生态经济区生态环境质量演变研究[J].城市建筑,2023,20(11):16-22.DOI:10.19892/j.cnki.csjz.2023.11.04.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:127
  • PDF: 215
  • HTML: 0
  • Cited by: 0
History
  • Received:November 08,2023
  • Revised:January 09,2024
  • Adopted:January 10,2024