• Article
  • | |
  • Metrics
  • |
  • Reference [34]
  • | | | |
  • Comments
    Abstract:

    [Objective] Analyzing the spatial-temporal evolution and influencing factors of carbon emissions in Qingdao City is of great significance for ecological protection and high-quality development.[Methods] Based on the land use data, nighttime light data, and social and economic data of Qingdao city from 2000 to 2020, carbon emissions from land use were calculated. By constructing a fitting model between carbon emissions and nighttime light values, the spatial distribution difference and trend of carbon emissions of different land use types in Qingdao city were revealed. The decoupling status between carbon emissions and economic development in Qingdao city was analyzed through the Tapio decoupling model. The contribution degree of various influencing factors of land use carbon emissions was analyzed by using Kaya decomposition and LMDI models. [Results] ①The net carbon emissions from land use in Qingdao city generally showed an increasing trend from 2000 to 2020. From 13,096,400 tons in 2000 to 36.4820 million tons in 2020, an increase of nearly 1.79 times;②The overall carbon emissions in Qingdao city presented a spatial distribution pattern of "high in the middle and low around", and industrial energy consumption was the main source of carbon emissions from construction land, with high carbon emission areas mainly concentrated in the Jiaozhou Bay area;③The relationship between economic development and carbon emissions in Qingdao city has undergone a transition from "expansion link to weak decoupling to strong decoupling";④The factors that promote the growth of carbon emissions in Qingdao are population size and economic effect, and the factors that inhibit the growth of carbon emissions in Qingdao are energy structure and energy intensity. [Conclusion] In the future, it is necessary to further adjust the industrial structure, accelerate the development of a low-carbon economy, and reduce carbon emissions from the source through measures such as technological innovation and energy structure adjustment.

    Reference
    [1] 巴曙松,吴大义.能源消费、二氧化碳排放与经济增长——基于二氧化碳减排成本视角的实证分析[J]. 经济与管理研究,2010,6:5-11+101.
    [2] 方精云,郭兆迪,朴世龙,等.1981~2000 年中国陆地植被碳汇的估算[J].中国科学(D 辑:地球科学),2007, 6:804-812.
    [3] 张杰,陈海,刘迪,等.基于县域尺度土地利用碳排放的时空分异及影响因素研究[J].西北大学学报(自然科学版),2022,52(01):21-31.
    [4] 陈书强,邓晓卫,王泽宇.基于全球视角的经济发展与碳排放关系研究[J/OL].环境科学与技术,2018(0 6):1-7[2023-03-29].
    [5] 杨坤,胡馨,石越.基于 RS 和 GIS 的土地利用变化碳排放现状及预测分析[J].长江科学院院报,2016,33 (07):137-141.
    [6] 周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,5:518-522.
    [7] Yang X,Wang M,Huang Y.The climatic-induced net carbon sink by terrestrial biosphere over 1901-1995[J]. Advances in Atmospheric Sciences, 2001, 18: 1192-1206.
    [8] 王孟杰,王艳军,李少春,等.融合多源遥感数据的长株潭城市群碳排放时空差异分析[J].测绘通报,2023(01):65-70.
    [9] 刘晓蝶.中国省域碳排放情景预测与达峰路径研究[D].安徽理工大学,2022.
    [10] 赵江燕,朱宇恩,马建超,等.山西省能源消费碳排放清单和影响因素研究[J].太原理工大学学报,2022,53(06):989-996.
    [11] 朱海,王立国,贺焱,等.多情景下中国省域旅游业碳达峰的时空特征研究[J].干旱区资源与环境,2023, 37(01):169-176.
    [12] 滕王滕菲,冯套柱,郭道燕.西北地区碳排放的驱动因素与脱钩效应研究[J/OL].北京师范大学学报(自然科学版):1-9[2023-03-29].
    [13] 曹周亮,张欣蓉,员学锋,等.基于土地利用变化的陕西省县域碳排放时空变化及影响因素研究[J].水土保持通报,2022,42(05):376-385.
    [14] 崔艳芳,张国兴.黄河流域资源型城市碳排放影响因素与达峰预测研究[J].人民黄河,2023,45(02):9-14.
    [15] 王艳军,王孟杰,柳林,等.DMSP/OLS 夜光数据的珠三角碳排放时空差异性分析[J].遥感学报,2022,26 (09):1824-1837.
    [16] 孙蒙,李长云,邢振方,等.碳中和目标下中国碳排放关键影响因素分析及情景预测[J/OL].高电压技术:1-12[2023-03-13].
    [17] 赵江燕,朱宇恩,马建超,等.山西省能源消费碳排放清单和影响因素研究[J].太原理工大学学报,2022,5 3(06):989-996.
    [18] 国家统计局.中国能源统计年鉴[M].北京:中国统计出版社,2001-2021.
    [19] 山东省统计局.山东统计年鉴[M].北京:中国统计出版社,2001-2021.
    [20] 青岛市统计局.青岛统计年鉴[M].北京:中国统计出版社,2001-2021.
    [21] Wu Y, Shi K, Chen Z, et al. Developing improved time-series DMSP-OLS-like data (1992–2019) in China by integrating DMSP-OLS and SNPP-VIIRS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14.
    [22] 段晓男,王效科,逯非,等.中国湿地生态系统固碳现状和潜力[J].生态学报,2008(02):463-469.
    [23] 赖力.中国土地利用的碳排放效应研究[D].南京大学,2010.
    [24] Walsh J J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen[J]. Nature, 1991, 350(6313): 53-55.
    [25] Meybeck M. Riverine transport of atmospheric carbon: sources, global typology and budget[J]. Water, air, and soil pollution, 1993, 70: 443-463.
    [26] 段华平,张悦,赵建波,等.中国农田生态系统的碳足迹分析[J].水土保持学报,2011,25(05):203-208.
    [27] 陈海红,李鹏程,王中航.GB/T 2589-2020《综合能耗计算通则》国家标准解读[J].标准科学,2021(12): 107-111.
    [28] 蔡博峰,朱松丽,于胜民,等.《IPCC 2006 年国家温室气体清单指南 2019 修订版》解读[J].环境工程, 2019,37(08):1-11.
    [29] 王利君.吉林省土地利用碳排放时空演变规律及效率研究[D].吉林大学,2021.
    [30] 夏楚瑜.基于土地利用视角的多尺度城市碳代谢及“减排”情景模拟研究[D].浙江大学,2019.
    [31] 赵荣钦,黄贤金,彭补拙.南京城市系统碳循环与碳平衡分析[J].地理学报,2012,67(6):13.
    [32] 田启明,徐炜达,李梦南,等.一种某行政区域内的碳排放计算方法及可视化方法[P].北京市 CN1140490 52B,2022-05-06.
    [33] 黎孔清.低碳经济导向的区域土地利用评价与结构优化研究[D].华中农业大学,2013.
    [34] 匡耀求,欧阳婷萍,邹毅,等.广东省碳源碳汇现状评估及增加碳汇潜力分析[J].中国人口.资源与环境, 2010,20(12):56-61.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:155
  • PDF: 202
  • HTML: 0
  • Cited by: 0
History
  • Received:November 16,2023
  • Revised:January 27,2024
  • Adopted:February 02,2024