Evaluation and prediction of ecosystem health in the Gansu section of the Yellow River Basin based on the PSR model
  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • | | | |
  • Comments
    Abstract:

    [Objective]To carry out research on the evaluation of the ecosystem health level of the Gansu section of the Yellow River Basin, and to provide theoretical reference and decision-making basis for the ecological protection and high-quality development of the basin.[Methods] Based on the 2011-2021 panel data, the PSR model was used to construct an ecosystem health evaluation index system for the Gansu section of the Yellow River Basin, the entropy value method and the comprehensive index method were used to comprehensively evaluate the ecosystem health level, and the GM-ARIMA model was used to predict the ecosystem health changes in the next ten years.[Results](1) From 2011 to 2021, the overall ecosystem health index of each city and state shows an upward trend, with Gannan ecosystem health in the Gannan Yellow River Important Water Supply Ecological Functional Area, in which Gannan ecosystem health is ranked as "inferior", Linxia ecosystem health from "inferior" to "poor", Loess Plateau Area, in which Lanzhou ecosystem health is ranked as "medium" to "good", Tianshui, Dingxi, and Pingliang ecosystem health is from "inferior" to "poor", Baiyin and Qingyang ecosystem health is in the "inferior" range, and Wuwei, a wind-sand comprehensive prevention and control area, has ecosystem health ranked as "inferior"; (2) The projected results of the ecosystem composite index for the period 2022-2031 show an increasing trend, but there is no significant change in the ecosystem health rating.[Conclusion] The overall level of ecosystem health in the Gansu section of the Yellow River Basin is not high, and current ecological protection and environmental improvement measures have not yet fully resolved the challenges facing the region's ecosystem, which will need to be further strengthened in the future by enhancing regulation and management to improve the health of the region's ecosystems.

    Reference
    [1] KARR J R, FAUSCH K D, Angermeier PL, et al. Assessing biological integrity in running waters: a method and its rationale[J]. Illinois Natural History Survey Special Publication, 1986(5): 1–28.
    [2] Schaeffer D J,Herricks E E,Kerster H W.Ecosystem health:I.Measuring ecosystem health[J].Environment Management,1998,12(4):445-455.
    [3] Rapport D J,Whitford W G.How ecosystems respond to stress common properties of arid andaquatic systems[J].Bioscience,1989,49(3):193-203.
    [4] Costanza R,D′Arge R,Groot R D,et al,.The value of the world′s ecosystem services and natural capital[J].Nature,1997,387(1):3-15.
    [5] C.S. Fellow, J.E Clapcott, J.W. Udy, S.E. Bunn, B.D. Harch. Benthic metabolism as an indicator of stream ecosystem health [J]. Hydrobiology, 2006, 115 (72): 71-87.
    [6] S.H. Newman, A. Chmura, K Converse, A.M Kilpatrick, N. Patel. Aquatic bird disease and mortality as an indicator of changing ecosystem health [J]. Marine ecology-progress series, 2007, 3 (52): 299-309.
    [7] 麦少芝,徐颂军,潘颖君.PSR模型在湿地生态系统健康评价中的应用[J].热带地理,2005,25(4):317-321.
    [8] ZHANG F, ZHANG J, WU R, et al. Ecosystem health assessment based on DPSIRM framework and health distance model in Nansi Lake, China[J]. Stochastic Environmental Research
    [9] 李政,何伟,潘洪义,等.基于熵权TOPSIS法与ARIMA模型的四川省耕地生态安全动态预测预警[J].水土保持研究,2018,25(3):217-223 2.
    [10] 王晓君,吴敬学,蒋和平.中国农村生态环境质量动态评价及未来发展趋势预测[J].自然资源学报,2017,32(5):864-876.
    [11] 路春燕,卫海燕,白俊燕.基于BP神经网络的城市化发展生态环境压力响应研究——以延安市为例[J].干旱区资源与环境,2012,26(4):61-66.
    [12] 马年圣,支晓娟,宋雨婷.基于PSR和GM(1,1)模型的西藏耕地生态安全评价与预测[J].干旱区资源与环境,2018,32(11):81-86.
    [13] 岳思妤,谈存峰,杨林娟,等.甘肃省泾河流域2010-2019年农村生态环境质量分析及预测[J].水土保持通报,2021,41(5):365-372.
    [14] 魏竞超, 李自涵, 董媛媛. 基于压力-状态-响应(PSR)模型的黄河流域环境安全评价体系法治化研究[J]. 中国环境监测, 2023, 39(01): 19-28.
    [15] 王广州,凡姚申,窦身堂,等.基于DPSIR的黄河口及毗邻海域生态系统健康评价[J].人民黄河,2023,45(6):92-97+162.
    [16] 李中锋,高婕,钟毅.西藏草地生态安全评价研究——基于生态系统服务价值改进的生态足迹模型[J].干旱区资源与环境,2023,37(4):9-19.
    [17] 冉璇,李渊,郭宇龙,等.基于InVEST模型的钱江源国家公园生态系统服务评估及权衡协同关系研究[J].长江流域资源与环境,2023,32(9):1932-1948.
    [18] 李政,何伟,潘洪义,等.基于熵权TOPSIS法与ARIMA模型的四川省耕地生态安全动态预测预警[J].水土保持研究,2018,25(3):217-223+2.
    [19] 王晓君,吴敬学,蒋和平.中国农村生态环境质量动态评价及未来发展趋势预测[J].自然资源学报,2017,32(5):864-876.
    [20] 路春燕,卫海燕,白俊燕.基于BP神经网络的城市化发展生态环境压力响应研究——以延安市为例[J].干旱区资源与环境,2012,26(4):61-66.
    [21] 马年圣,支晓娟,宋雨婷.基于PSR和GM(1,1)模型的西藏耕地生态安全评价与预测[J].干旱区资源与环境,2018,32(11):81-86.
    [22] 岳思妤,谈存峰,杨林娟,等.甘肃省泾河流域2010-2019年农村生态环境质量分析及预测[J].水土保持通报,2021,41(5):365-372.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:166
  • PDF: 177
  • HTML: 0
  • Cited by: 0
History
  • Received:December 13,2023
  • Revised:February 23,2024
  • Adopted:February 26,2024