Study on the accounting and spatial-temporal evolution characteristics of agricultural carbon emissions in county units of Fujian Province
Clc Number:

F323.2

Fund Project:

Fujian Provincial Social Science Research Base major project "Rural Revitalization and" Dual carbon "background of Rural Human Settlements Carbon Emission Research" (FJ2022MJDZ020); National Natural Science Youth Foundation Project "Research on Non-grain Expansion Mechanism and Adaptive Control of Cultivated land Fruit Trees in Southern Mountainous Areas Facing Dietary Demand Transformation" (42201280)

  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • | | | |
  • Comments
    Abstract:

    [Objective] To analyze the temporal and spatial characteristics of net carbon emissions from agriculture at the county scale in Fujian Province, with a view to providing a reference basis for the formulation of carbon emission reduction countermeasures in Fujian Province and other provinces and municipalities. [Methods] We constructed an accounting inventory of agricultural carbon emissions based on 12 carbon sources in plantation and livestock industries, and measured the total agricultural carbon emissions by using the carbon emission factor method; selected seven major crops to calculate the carbon uptake by combining with the agricultural characteristics of Fujian Province; and analyzed the spatial and temporal characteristics of the net agricultural carbon emissions in Fujian Province from 2001 to 2020 by using the exploratory spatial analysis method. [Results] ① During the study period, the net carbon emissions showed an inverted "V" trend of first increasing and then decreasing. In terms of carbon sources, carbon emissions from agricultural land use accounted for a larger proportion; in terms of carbon sinks, rice, vegetables and sugarcane contributed more to carbon sequestration. The intensity of agricultural carbon emissions in most counties (cities) showes a decreasing trend, but the average annual decline is small. ② There is a significant global spatial positive correlation of carbon emissions in counties in Fujian Province, showing spatial agglomeration characteristics, and the agglomeration pattern is dominated by high-high and low-low agglomeration. The spatial distribution pattern of the intensity of agricultural carbon emissions changes considerably, with an overall decreasing trend, in which about half of the counties (cities) are in the lower intensity zone. ③ The spatial class distribution pattern of counties (cities) in Fujian Province from 2001 to 2020 has changed to a certain extent, with an increase in the number of medium-emission zones and medium-low-emission zones, and a decrease in the number of high-emission zones, medium-high-emission zones and low-emission zones, and the polarization has been alleviated. [Conclusion] In recent years, most counties inFujian Province have shown a decreasing trend in agricultural carbon emissions and carbon emission intensity, and carbon emission reduction has achieved certain results, but the decline is not large, the future should also be from the policy incentives, optimization of industrial structure and other aspects of the measures taken to strengthen the effect of emission reduction, and to promote the transformation of agriculture low-carbon.

    Reference
    [1] 田云, 张俊飚, 李波. 中国农业碳排放研究:测算、时空比较及脱钩效应[J]. 资源科学, 2012, 34(11): 2097-2105.
    [2] 冉光和, 王建洪, 王定祥. 我国现代农业生产的碳排放变动趋势研究[J]. 农业经济问题, 2011, 32(02): 32-38.
    [3] 李政通, 白彩全, 肖薇薇. 基于LMDI模型的东北地区农业碳排放测度与分解[J]. 干旱地区农业研究, 2017, 35(04): 145-152.
    [4] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, 2020-09-23(1).
    [5] 龚钰, 陆建飞, 罗云建, 等. 江苏省县域种植业碳源/汇测算与农业园区空间相关性分析[J]. 生态与农村环境学报, 2023, 39 (08): 963-972.
    [6] 段华平, 张悦, 赵建波, 等. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 2011, 25(05): 203-208.
    [7] 田云, 张俊飚, 李波. 湖北省农地利用碳排放时空特征与脱钩弹性研究[J]. 长江流域资源与环境, 2012, 21(12): 1514-1519.
    [8] 白义鑫, 盛茂银, 胡琪娟, 等.贵州喀斯特农田生态系统碳足迹时空差异研究[J].四川农业大学学报, 2019, 37(5): 685-694.
    [9] BRUCE R. The potential of world cropland soils to sequester C and mitigate the greenhouse effect[J]. Environmental Science Policy, 1999, 2(2): 177-185.
    [10] 叶文伟, 王城城, 赵从举, 等. 近20年海南岛热带农田生态系统碳足迹时空格局演变[J]. 中国农业资源与区划, 2021, 42(10): 114-126.
    [11] 韦沁, 曲建升, 白静, 等. 我国农业碳排放的影响因素和南北区域差异分析[J]. 生态与农村环境学报, 2018, 34(04): 318-325.
    [12] 田云, 尹忞昊. 中国农业碳排放再测算:基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022, (03): 104-127.
    [13] 田云,张俊飚. 中国农业生产净碳效应分异研究 [J]. 自然资源学报, 2013, 28 (08): 1298-1309..
    [14] 何艳秋, 陈柔, 吴昊玥, 等. 中国农业碳排放空间格局及影响因素动态研究[J]. 中国生态农业学报, 2018, 26(09): 1269-1282.
    [15] 肖晰文, 刘春红, 刘再森, 等. 三峡库区(湖北段)农业碳排放特征、驱动因素与趋势预测[J]. 中国农业资源与区划. https://kns.cnki.net/kcms/detail/11.3513.S.20221031.1105.020.html.
    [16] 李绵德, 周冬梅, 朱小燕, 等. 河西走廊2000—2020年农业碳排放时空特征及其影响因素[J]. 农业资源与环境学报. https://doi.org/10.13254/j.jare.2022.0584.
    [17] 李波, 杜建国, 刘雪琪. 湖北省农业碳排放的时空特征及经济关联性[J]. 中国农业科学, 2019, 52(23): 4309-4319.
    [18] 张志高, 袁征, 张翠贞, 等. 河南省农业碳排放时空特征与脱钩弹性研究[J]. 江苏农业科学, 2017, 45(17): 281-285.
    [19] 黎孔清, 陈俭军, 马豆豆. 基于STIRPAT和GM(1,1)模型的湖南省农地投入碳排放增长机理及趋势预测[J]. 长江流域资源与环境, 2018, 27(02): 345-352.
    [20] 常青, 蔡为民, 谷秀兰, 等. 河南省农业碳排放时空分异、影响因素及趋势预测[J]. 水土保持通报. https://doi.org/10.13961/j.cnki.stbctb.20230220.011.
    [21] 邱子健, 靳红梅, 高南, 等. 江苏省农业碳排放时序特征与趋势预测[J]. 农业环境科学学报, 2022, 41(03): 658-669.
    [22] 张再杰, 杨伟芳. 湖北省农业碳排放及基于 K-means 聚类算法的县级碳排放研究[J]. 云南农业大学学报(社会科学), 2023, 17(1): 1?7. DOI: 10.12371/j.ynau(s).202209104.
    [23] 李远玲, 王金龙 杨伶. 基于县域尺度的湖南省农业碳排放时空特征分析[J]. 中国农业资源与区划, 2022, 43(04): 75-84.
    [24] 郑博福, 梁涵, 万炜, 等. 江西省县域农业碳排放时空格局及影响因素分析[J]. 农业工程学报, 2022, 38(23): 70-80.
    [25] 胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26(10): 247-252.
    [26] 李波, 张俊飚. 基于投入视角的我国农业碳排放与经济发展脱钩研究[J]. 经济经纬, 2012, 29(04): 27-31.
    [27] Climate Change 2013: The Physicle Science Basis Technical Summary.[R] IPCC, 2013.
    [28] Tristram O. West, Gregg Marland. A synthesis of carbon sequestration, carbon emissions, and net-carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture, Ecosystems and Environments. 2002, (91): 217-232.
    [29] 许萍萍, 赵言文, 陈颢明, 等. 江苏省农田生态系统碳源/汇、碳足迹动态变化[J]. 水土保持通报, 2018, 38(05): 238-243.
    [30] 伍国勇, 刘金丹, 杨丽莎. 中国农业碳排放强度动态演进及碳补偿潜力[J]. 中国人口·资源与环境, 2021, 31(10): 69-78.
    [31] 张赫, 黄雅哲, 王睿, 等. 中国县域碳排放脱钩关系及其时空特征演变[J]. 资源科学, 2022, 44(04): 744-755.
    [32] 夏四友, 赵媛, 许昕, 等. 近20年来中国农业碳排放强度区域差异、时空格局及动态演化[J]. 长江流域资源与环境, 2020, 29(03): 596-608.
    [33] 杨思存, 霍琳, 王成宝, 等. 基于 STIRPAT 模型的甘肃省农业碳排放特征分析[J]. 干旱区地理. https://kns.cnki.net/kcms/detail/65.1103.X.20230511.1048.001.html.
    [34] 王树芬, 高冠龙, 李伟, 等. 2000—2020 年山西省农业碳排放时空特征及趋势预测[J]. 农业环境科学学报. https://kns.cnki.net/kcms/detail/12.1347.S.20230320.1506.009.html.
    [35] 林舒晗, 郑晶. 福建省农业生产碳排放的区域差异分析 [J]. 长春理工大学学报(社会科学版), 2016, 29(06): 81-86+136.
    [36] 王方怡, 洪志猛, 康智明, 等. 福建省农业碳排放时空变化及其驱动因素[J]. 福建农业学报, 2019, 34(01): 124-134.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:175
  • PDF: 156
  • HTML: 0
  • Cited by: 0
History
  • Received:December 14,2023
  • Revised:February 23,2024
  • Adopted:February 26,2024