Ensemble Kalman Filter Assimilation Method for Stability Evaluation of Loess Landslides
Author:
Clc Number:

P237

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    [Objective] The prediction accuracy of a regional landslide stability evaluation model was improved to solve the shortcomings of over-prediction caused by over-simplification of the landslide occurrence mechanism and the mechanical mechanism based on the static physical model of the traditional landslide stability analysis, and to determine the typical spatial-temporal variability and uncertainty of model parameters.[Methods] The data assimilation method of ensemble Kalman filtering was used to construct a regional landslide data assimilation scheme based on the TRIGRS model and SBAS-InSAR observation data in the area around the North Ring Road of Lanzhou City, Gansu Province. The coefficients of safety (Fs) in the model were assimilated, and the model parameters for the internal friction angle were updated. Then landslide stability was corrected and root-mean-square deviation (RMSD) was used to test the accuracy of the assimilated values.[Results] After assimilation, the landslide safety coefficient of the study area was significantly greater than the coefficient value predicted by the model, and the percentage of unstable area was reduced from 12 % to 7 %, which was closer to the actual observed value. The test gradually corrected the internal friction angle parameter towards the observed value, and realized the dynamic updating of the model parameters. The root-mean-square deviation decreased from 0.33 to about 0.04.[Conclusion] The data assimilation method based on the ensemble Kalman filter effectively corrected the model stability prediction results so that the actual situation of landslides in the current region was more accurately reflected with greater prediction accuracy.

    Reference
    [1] He Jianyin, Qiu Haijun, Qu Feihang, et al. Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops 3D models[J]. Catena, 2021,197:104999.
    [2] 马崇武,刘忠玉.降雨入渗时无限边坡的水平位移与稳定性分析[J].岩土力学,2007,28(增刊1):563-568. Ma Chongwu, Liu Zhongyu. Horizontal displacements and stability analysis of infinite slopes under rainfall infiltration[J]. Rock and soil mechanics, 2007,28(Suppl.1):563-568.
    [3] 同霄,彭建兵,朱兴华,等.降雨作用下黄土浅层滑坡的危险性分析[J].水土保持通报,2016,36(3):109-113. Tong Xiao, Peng Jianbing, Zhu Xinghua, et al. Risk of loss shallow landslides under different rainful conditions[J]. Soil and water conservation bulletin, 2016,36(3):109-113.
    [4] 高波,王晓勇.基于SINMAP模型的延安市滑坡危险性区划[J].水土保持通报,2019,39(3):211-216. Gao Bo, Wang Xiaoyong. Risk zoning of landslide based on SINMAP model in Yan'an city[J]. Soil and water conservation bulletin, 2019,39(3):211-216.
    [5] 徐沅鑫,郭海燕,马振峰.TRIGRS模型预测降雨型浅层滑坡的应用性评价[J].高原气象,2018,37(3):815-825. Xu Yuanxin, Guo Haiyan, MA Zhengfeng. Application of TRIGIS model on rainfall-induced shallow landslides forecasting. Plateau meteorology, 2018,37(3):815-825.
    [6] Zhuang Jianqi, Peng Jianbing, Wang Gonghui, et al. Prediction of rainfall-induced shallow landslides in the Loess Plateau, Yan'an, China, using the TRIGRS model[J]. Earth Surface Processes and Landforms, 2017,42(6):915-927.
    [7] Wei Xin, Zhang Lulu, Luo Junyao, et al. A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping[J]. Natural Hazards, 2021,109(1):471-497.
    [8] Wei Xin, Zhang Lulu, Gardoni P, et al. Comparison of hybrid data-driven and physical models for landslide susceptibility mapping at regional scales[J]. Acta Geotechnica, 2023,18(8):4453-4476.
    [9] 宫鹏.遥感科学与技术中的一些前沿问题[J].遥感学报,2009,13(1):13-23. Gong Peng. Some advanced problems in remote sensing science and technology[J]. Journal of remote sensing, 2009,13(1):13-23.
    [10] Geer A. Learning earth system models from observations:Machine learning or data assimilation[J]. Philosophical Transactions of the Royal Society A, 2021,379(2194):20200089.
    [11] 蒋亚楠.地质灾害监测中的SAR变形观测、解译与数据同化研究[J].测绘学报,2018,47(10):1425. Jiang Yanan. SAR deformation measurement, interpretation and data assimilation in geological disaster monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(10):1425.
    [12] Jiang Chenhui, Zhu Dejun, Li Haobo, et al. Improving the particle filter for data assimilation in hydraulic modeling by using a Cauchy likelihood function[J]. Journal of Hydrology, 2023,617:129050.
    [13] Evensen G. The Ensemble Kalman Filter:Theoretical formulation and practical implementation[J]. Ocean Dynamics, 2003,53(4):343-367.
    [14] 马建文,秦思娴.数据同化算法研究现状综述[J].地球科学进展,2012,27(7):747-757. Ma Jianwen, Qinsixian. A review of the research status of data assimilation algorithms[J]. Progress in earth science, 2012,27(7):747-757.
    [15] Ma Hongyuan, Huang Jianxi, Zhu Dehai, et al. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with ensemble Kalman filter[J]. Mathematical and Computer Modelling, 2013,58(3/4):759-770.
    [16] Tao Yuanqin, Sun Honglei, Cai Yuanqiang. Predicting soil settlement with quantified uncertainties by using ensemble Kalman filtering[J]. Engineering Geology, 2020,276:105753.
    [17] 王春娟,刘全明,尹承深,等.基于集合卡尔曼滤波同化方法和HYDRUS-1D模型的土壤水分模拟[J].干旱地区农业研究,2023,41(2):141-149. WANG Chunjuan, LIU Quanming, YIN Chengshen, et al. Simulation of soil moisture based on ensemble Kalman filter assimilation method and HYDRUS-1D model[J]. Agricultural research in dry areas, 2023,41(2):141-149.
    [18] Jiang Yanan, Liao Mingsheng, Zhou Zhiwei, et al. Landslide deformation analysis by coupling deformation time series from SAR data with hydrological factors through data assimilation[J]. Remote Sensing, 2016,8(3):179.
    [19] Wang Jing, Nie Guigen, Xue Changhu. Landslide displacement prediction based on time series analysis and data assimilation with hydrological factors[J]. Arabian Journal of Geosciences, 2020,13(12):1-9.
    [20] 张映雪.基于GIS的兰州地区滑坡灾害易发性评价[D].甘肃兰州:兰州理工大学,2017. Zhang Yinxue. Evaluation of landslide hazard vulnerability in Lanzhou based on GIS[D]. Lanzhou, Gansu:Lanzhou University of Technology, 2017.
    [21] 祁元,刘勇,杨正华,等.基于GIS的兰州滑坡与泥石流灾害危险性分析[J].冰川冻土,2012,34(1):96-104. Qi Yuan, Liu Yong, Yang Zhenghua, et al. Risk analysis of landslide and debris flow in Lanzhou based on GIS[J]. Journal of Glaciology and Geocryology, 2012,34(1):96-104.
    [22] 李婧,卢玲,唐泽.基于TRIGRS模型的区域降雨型浅层滑坡危险性评价[J].甘肃水利水电技术,2022,58(1):24-27. Li Jing, Lu Ling, Tang Ze. Risk assessment of regional rain-type shallow landslide based on TRIGRS model[J]. Gansu Water Resources and Hydropower Technology, 2022,58(1):24-27.
    [23] Iverson R M. Landslide triggering by rain infiltration[J]. Water resources research, 2000,36(7):1897-1910.
    [24] 郑玲静,李秀珍,姚杰,等.基于TRIGRS与Scoops 3D耦合模型的潜在滑坡稳定性时空动态预测[J].自然灾害学报,2023,32(2):199-209. Zheng Lingjing, Li Xiuzhen, Yao Jie, et al. Spatial and temporal dynamic prediction of potential landslide stability based on TRIGRS and Scoops3D coupling model[J]. Journal of Natural Disasters, 2019,32(2):199-209.
    [25] 张波.兰州盆地第三系砂岩工程地质特性评价研究[J].工程地质学报,2014,22(1):166-172. Zhang Bo. Evaluation of engineering geological chara-cteristics of Tertiary sandstone in Lanzhou Basin[J]. Journal of Engineering Geology, 2014,22(1):166-172.
    [26] 王万平,张熙胤,王义,等.季节冻土区黄土抗剪强度变化特征及其影响因素[J].哈尔滨工业大学学报,2022,54(8):143-150. Wang Wanping, Zhang Xiyin, Wang Yi, et al. Variation characteristics and influencing factors of loess shear strength in seasonal frozen soil region[J]. Journal of Harbin Institute of Technology, 2022,54(8):143-150.
    [27] 陈琳.兰州高坪区和低丘缓坡区压实黄土力学性质及其工程应用[D].北京:中国地质大学(北京),2018. Chen Lin. Mechanical properties and engineering applications of compacting loess in high plateau and low hill areas of Lanzhou[D]. Beijing:China University of Geosciences (Beijing), 2018.
    [28] 徐硕昌,刘德仁,王旭,等.兰州新区大厚度湿陷性黄土宏细观参数试验研究[J].铁道科学与工程学报,2022,19(7):1918-1926. Xu Shuochang, Liu Deren, Wang Xu, et al. Experimental study on macro and micro parameters of large thickness collapsible loess in Lanzhou New District[J]. Journal of Railway Science and Engineering, 2022,19(7):1918-1926.
    [29] 薛长虎.基于改进粒子滤波的大型滑坡数据同化方法研究[D].湖北武汉:武汉大学,2019. Xue Changhu. Research on large-scale landslide data assimilation method based on improved particle filter[D]. Wuhan, Hubei:Wuhan University, 2019.
    [30] Rezaie-Balf M, Attar N F, Mohammadzadeh A, et al. Physicochemical parameters data assimilation for efficient improvement of water quality index prediction:Comparative assessment of a noise suppression hybridization approach[J]. Journal of Cleaner Production, 2020,271:122576.
    [31] 麻源源,左小清,麻卫峰,等.利用数据同化技术实现InSAR和水准数据融合研究[J].工程勘察,2019,47(8):49-55. Ma Yuanyuan, Zuo Xiaoqing, Ma Weifeng, et al. Research on InSAR and level data fusion using data assimilation technology[J]. Engineering Survey, 2019,47(8):49-55.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王梦杨,魏冠军,高茂宁.黄土滑坡稳定性评价的集合卡尔曼滤波同化方法[J].水土保持通报英文版,2024,44(1):109-117

Copy
Share
Article Metrics
  • Abstract:158
  • PDF: 800
  • HTML: 0
  • Cited by: 0
History
  • Received:June 11,2023
  • Revised:July 05,2023
  • Online: April 26,2024