Abstract:[Objective] The spatial distribution characteristics and laws of geological disasters were determined at the Huangshui River basin in Qinghai Province, in order to provide data support and a scientific basis for disaster prevention and reduction. [Methods] Geological hazard sites were identified by small baseline subset interferometric synthetic aperture radar (SBAS-InSAR). By combining topographic factors, geological factors, environmental factors, meteorological factors, and human activities, the spatial distribution law of disasters was analyzed, and a logistic regression (LR)-frequency response (FR) model was established and tested. The return probability value was used to evaluate susceptibility. [Results] ① The potential geological disasters distributed in the Huangshui River basin were mainly landslide and collapse, and many kinds of potential geological disasters occurred simultaneously. Landslides and unstable slopes usually developed on slopes with low slope and were accompanied by a large number of tension and shear cracks that were especially obvious in the rainy season, posing a threat to the safety of traffic and residents below the mountain. Landslides and unstable slopes on both sides of river valleys may also block rivers and form barrier lakes, further aggravating disaster risks. Slope collapses mostly developed in the steep mountain walls with relatively loose rock structure or severe weathering. Due to geological fragility coupled with stimulation by natural factors such as rainfall, situations easily develop and result in falling mountain soil and rocks that pose a threat to residential areas and traffic lines below. ② Geological disasters were primarily located in the 2 425—3 650 m elevation area of the study area, and the northeast direction was the slope direction of geological disasters. Normalized difference vegetation index (NDVI) decreased with the increase in geological hazards, increased with the increase of slope, relief, and daily precipitation, and decreased with the increase of distance from the fault. ③ The high-risk and relatively high-risk areas in the Huangshui River basin, covering an area of about 5 937.60 km2, accounting for about 38.78% of the total area of the study area, and were mainly concentrated in the south and north border areas of Huangshui River basin, Huangzhong-Datong-Haiyan Junction, and the surrounding slopes of the construction area. ④ The evaluation results were tested. The area under curve (AUC) of the receiver operating characteristic curve (ROC curve) of model prediction performance was 0.787. The FR in the prone area decreased step by step from high to low, and this result was in good agreement with the distribution of actual disaster points. ⑤ Fault core density was the main control factor of geological hazard development in the Huangshui River basin, followed by slope direction, relief degree, and road core density. Section curvature had the least influence on geological hazard development. [Conclusion] ① SBAS-InSAR technology effectively identified potential geological hazards in the Huangshui River basin, and the susceptibility evaluation results obtained by the LR-FR model were reliable. ② The distribution of geological disaster prone areas in the Huangshui Basin had obvious spatial differences, mainly located in the areas with higher elevation, lower vegetation coverage rate, greater rainfall, and close to the fault. Fault core density was the main control factor of geological disaster susceptibility. ③ The geological disasters in the Huangshui Basin were characterized by frequent, sudden, and high risk occurrences that seriously impacted local people’s lives, regional economic development, and the ecological environment. Therefore, the monitoring, early warning, and prevention of these disasters are particularly important.