Abstract:[Objective] The anti-erosion and anti-scouring characteristics and factors influencing road and campus green spaces in Wenjiang District, Chengdu City were analysed in order o provide functional guidance for urban green space soil and water conservation and promote ecologically sustainable development. [Methods] The soil anti-erosion and anti-scouring properties of arbour + grass, arbour + bush, bush, bush + grass and grass in road and campus green spaces were characterised through field sampling and laboratory tests. [Results] The >5 mm soil water-stable aggregate content was highest in both roads (79.72%) and campus green spaces (39.23%). Total soil porosity, soil water content, and silt content were greater in campus green spaces than road green spaces (p<0.05). Mean weight diameter (MWD), geometric mean diameter (GMD), soil anti-erosion, water stability aggregate index, and anti-scouring were all higher in the road green space than in the campus green space (p<0.05). Specifically, the anti-erosion and anti-scouring of arbour + bush and bush + grass structures were better than that of the other vegetation structures, and the soil anti-scouring coefficient decreased with increasing landscape slope. Soil anti-erosion and-scouring were positively correlated with >5 mm soil water-stable aggregates, organic matter content, and soil clay particles, and negatively correlated with the percentage of aggregate destruction (PAD), unstable aggregate index (ELT) and <0.25 mm and 0.25~2 mm water-stable aggregates (p<0.01). [Conclusion] Arbour + bush and bush + grass had the best soil anti anti-erosion and-scouring effects on road green areas. Campus green space can reduce the risk of soil erosion by adjusting the vegetation structure, thereby enhancing the stress resistance and ornamental property.