Abstract:[Objective] The width, spacing, and system configuration mode of scientifically designed sand-control forest belts along the Hetian-Ruoqiang railway in areas prone to strong winds and sandstorms were analysed, in order to provide theoretical foundations for the configuration and construction of protective forest belts along the railway in sandy regions. [Methods] The configuration of a sand protection forest belt was studied using wind tunnel experiments and Haloxylon ammodendron and Calligonum mongolicum as forest tree models. [Results] When the protective forest belt spanned five rows and the gap between each belt was six times the height, a noticeable decrease in airflow was observed behind the second belt, with substantial attenuation continuing into the region behind the third sand-control forest belt. Notably, this attenuation remained consistent regardless of wind speed, highlighting its effective protective nature. Utilisation of these three forest belts resulted in enhanced protection. The protective area on the leeward side of the forest belt decreased as the wind speed increased. [Conclusion] The forest belt system employed the configuration modes of five protective forests to enhance the protective effect of the system against high wind speeds.