Research progress on the effects of erosion and sedimentation on the form, concentration and enrichment of heavy metal(loid)s in soil
Affiliation:

Guizhou University

Clc Number:

X53

Fund Project:

The National Natural Science Foundation of China (NSFC), "Mechanism of soil erosion on Cd migration in sloping farmland in Karst high background Area" (42367047); Key Laboratory of Karst Ecosystem and Rocky Desertification Control, Ministry of Natural Resources/Project of Karst Dynamics Major Science and Technology Innovation Base of Guangxi "Mechanism of influence of soil leakage in shallow karst Fractures on Cd migration in Karst Area" (YRSW-2023-086); State Key Laboratory of Soil Erosion and Dryland Agriculture in the Loess Plateau, Institute of Soil and Water Conservation, Ministry of Water Resources, Chinese Academy of Sciences, Foundation of Surface/Subsurface Soil Erosion on Cadmium Migration in Sloping Farmland in Geochemical Anomaly Area, F2010121002-202416

  • Article
  • | |
  • Metrics
  • |
  • Reference [98]
  • | | | |
  • Comments
    Abstract:

    [Objective] To investigate the effect of erosion and sedimentation on the form, concentration and enrichment characteristics of heavy metals in soil, so as to further understand the mechanism of the influence of erosion and sedimentation on the form, concentration and enrichment of heavy metals in soil, and provide scientific reference for the prevention and control of soil heavy metal pollution in river basins. [Methods] Based on the relevant articles about the influence of erosion-deposition on heavy metals in soil, the key factors affecting heavy metals in soil during erosion-deposition were systematically studied. [Results] (1) Erosion causes differences in the spatial distribution of heavy metal content in soil through runoff erosion, rainfall promotes the transformation of the form of heavy metal from granular to soluble, and the form of heavy metal may be transformed under sedimentation. Soil aggregates and clay contents in sedimentary environment affect the distribution and enrichment of heavy metals. (2) Organic matter has dual effects on heavy metals, which can adsorb free heavy metal ions, reduce the exchange state content of heavy metals in soil, and can also be complexed with heavy metals to increase the organic binding state content of heavy metals. (3) Soil hydrogenionconcentration (pH) and cationexchangecapacity (CEC) have significant effects on the transformation of heavy metal forms. Under acidic conditions, the complexation and precipitation between heavy metal ions are promoted, while under alkaline conditions, the positive charge on the surface of soil particles increases and repelling the positive charge carried by soil heavy metal ions, thus affecting the adsorption between the surface of soil particles and heavy metal ions. (4) Generally, the higher the soil moisture, the greater the solubility of heavy metals, but excessive water will lead to insufficient oxygen and reduce the redox potential, thus affecting the reduction release of heavy metals. Changes in the redox potential (Eh) directly affect the stability of iron and manganese oxides and sulfides in the soil, and then affect the concentration change of heavy metals. [Conclusion] The form, concentration and enrichment characteristics of heavy metals in soil during erosion-deposition process are affected by various environmental factors, showing significant differences from the erosion area to the deposition area. Future studies should further explore the mechanism and mechanism of soil heavy metal form transformation under different environmental conditions, and clarify the specific influence of soil aggregate and texture on the enrichment characteristics of heavy metals. A more accurate model of heavy metal migration in soil was established.

    Reference
    [1] 崔德杰, 张玉龙. 土壤重金属污染现状与修复技术研究进展[J]. 土壤通报, 2004,35(03):366-370.
    [2] Cadwalader G O, Renshaw C E, Jackson B P et al. Erosion and physical transport via overland flow of arsenic and lead bound to silt-sized particles[J]. Geomorphology, 2011,128(1):85-91.
    [3] 陈佳, 范萍萍, 龙文涛等. 土壤侵蚀对重金属迁移的作用规律与机制研究进展[J]. 水土保持研究, 2024,31(01):460-470.
    [4] 余涛, 蒋天宇, 刘旭等. 土壤重金属污染现状及检测分析技术研究进展[J]. 中国地质, 2021,48(02):460-476.
    [5] Berhe A A, Barnes R T, Six J et al. Role of Soil Erosion in Biogeochemical Cycling of Essential Elements: Carbon, Nitrogen, and Phosphorus[J]. Annual Review of Earth & Planetary Sciences, 2018,46(1):10018-82517.
    [6] Berhe A A, Torn M S. Erosional redistribution of topsoil controls soil nitrogen dynamics[J]. Biogeochemistry, 2017,132(1):37-54.
    [7] Shi P, Schulin R. Erosion-induced losses of carbon, nitrogen, phosphorus and heavy metals from agricultural soils of contrasting organic matter management[J]. Science of The Total Environment, 2018,618(15):210-218.
    [8] Wei X, Bai X, Wen X et al. A large and overlooked Cd source in karst areas: The migration and origin of Cd during soil formation and erosion[J]. Science of The Total Environment, 2023,895(15):165126.
    [9] 李琦, 时鹏, 杨倩等. 土地利用和侵蚀过程对土壤重金属分布的影响[J]. 北京师范大学学报(自然科学版), 2019,55(01):153-159.
    [10] 梁涛, 王浩, 张秀梅等. 不同土地类型下重金属随暴雨径流迁移过程及速率对比[J]. 应用生态学报, 2003,14(10):1756-1760.
    [11] Cai Z, Lei S, Zhao Y et al. Spatial Distribution and Migration Characteristics of Heavy Metals in Grassland Open-Pit Coal Mine Dump Soil Interface[J]. International Journal of Environmental Research and Public Health, 2022,19(8):4441.
    [12] 刘丽. 喀斯特地区土壤侵蚀对镉和铅迁移特征的影响[D]. 贵州 贵阳:贵州大学, 2023.
    [13] 徐蝶, 赵士杰, 蔡雄飞等. 水蚀过程中土壤重金属元素的迁移特征[J]. 水土保持通报, 2022,42(01):83-92.
    [14] Quinton J N, Catt J A. Enrichment of Heavy Metals in Sediment Resulting from Soil Erosion on Agricultural Fields[J]. Environmental Science & Technology, 2007,41(10):3495-3500.
    [15] Duan X, Zhang G, Rong L et al. Spatial distribution and environmental factors of catchment-scale soil heavy metal contamination in the dry-hot valley of Upper Red River in southwestern China[J]. CATENA, 2015,135:59-69.
    [16] 杨宇, 郭婷婷, 刘孝利等. 南方典型矿区农业小流域耕地土壤重金属空间分布特征及污染评价[J]. 环境科学, 2023,44(03):1602-1610.
    [17] 蔡敬怡, 谭科艳, 路国慧等. 贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征[J]. 岩矿测试, 2019,38(03):305-315.
    [18] Prokisch J, Széles é, Kovács B et al. Sampling Strategies for Testing and Evaluation of Soil Contamination in Riparian Systems at the Tisza River Basin, Hungary[J]. Communications in Soil Science and Plant Analysis, 2009,40(1-6):391-406.
    [19] 程俊伟, 蔡深文, 黄明琴. 贵州毛石钼矿区土壤及表层沉积物中重金属形态分析及生态风险评价[J]. 水土保持研究, 2021,28(01):353-359.
    [20] 潘泳兴, 陈盟, 王櫹橦. 典型铅锌矿流域土壤重金属累积与分布的影响因素分析[J]. 环境科学, 2023,44(11):6071-6084.
    [21] Zhou L, Teng M, Song F et al. Integrated assessment of land-to-river Cd fluxes and riverine Cd loads using SWAT-HM to guide management strategies[J]. Journal of Environmental Management, 2023,334(15):117501.
    [22] Peng B, Chen H, Fang X et al. Distribution of Pb isotopes in different chemical fractions in bed sediments from lower reaches of the Xiangjiang River, Hunan province of China[J]. Science of The Total Environment, 2022,829(10):154394.
    [23] Otansev P, Ta?k?n H, Ba?sar? A et al. Distribution and environmental impacts of heavy metals and radioactivity in sediment and seawater samples of the Marmara Sea[J]. Chemosphere, 2016,154:266-275.
    [24] Jacques O, Pienitz R. Asbestos mining waste impacts on the sedimentological evolution of the Bécancour chain of lakes, southern Quebec (Canada)[J]. Science of The Total Environment, 2022,807(03):151079.
    [25] Zhang L, Qian J, Liu J et al. Research Status and Development Trend of Soil Heavy Metal Speciation Extraction Methods[J]. Advances in Geosciences, 2024,14(01):30-37.
    [26] 孙斌, 魏志敏, 张力浩等. 地质高背景土壤重金属赋存特征及微生物群落结构差异[J]. 土壤学报, 2021,58(05):1246-1255.
    [27] 刘继东, 任杰, 陈娟等. 酸雨淋溶条件下赤泥中重金属在土壤中的迁移特性及其潜在危害[J]. 农业环境科学学报, 2017,36(01):76-84.
    [28] 杨洋, 铁柏清, 张鹏等. 降雨和植被覆盖对土壤重金属流失的影响[J]. 水土保持学报, 2011,25(01):39-42.
    [29] Qiao P, Wang S, Li J et al. Process, influencing factors, and simulation of the lateral transport of heavy metals in surface runoff in a mining area driven by rainfall: A review[J]. Science of The Total Environment, 2023,857(01):159119.
    [30] 柳山, 向珏贻, 李燕妮等. 模拟酸雨入渗对土壤重金属释放规律的研究[J]. 环境科学与技术, 2021,44(05):132-139.
    [31] 秦晴晴, 张琢, 宋子文. 腐殖质来源、特征及其与土壤中重金属作用机制的研究进展[J]. 环境化学, 2023,42(06):1899-1910.
    [32] 杨宾, 罗会龙, 刘士清等. 淹水对土壤重金属浸出行为的影响及机制[J]. 环境工程学报, 2019,13(04):936-943.
    [33] 常春英, 曹浩轩, 陶亮等. 淹水和干湿交替对修复后土壤铬的稳定性影响研究[J]. 环境科学研究, 2022,35(05):1150-1158.
    [34] Ji Y, Xu J, Zhu L. Impact of a super typhoon on heavy metal distribution, migration, availability in agricultural soils[J]. Environmental Pollution, 2021,289(15):117835.
    [35] 魏晗梅, 郑粉莉, 冯志珍等. 薄层黑土区流域尺度土壤养分对侵蚀-沉积的响应[J]. 水土保持学报, 2021,35(04):49-54.
    [36] Artemyeva Z S, Danchenko N N, Kolyagin Y G et al. Chemical Structure of Organic Matter of Agrochernozems in Different Slope Positions[J]. Eurasian Soil Sc, 2023,56(6):705-714.
    [37] Meijboom F W, Hassink J, Van Noordwijk M. Density fractionation of soil macroorganic matter using silica suspensions[J]. Soil Biology and Biochemistry, 1995,27(8):1109-1111.
    [38] 李思敏, 吴月颖, 吴治澎等. 不同有机改良剂对矿区土壤溶解性有机质及其铅赋存形态的影响机制[J]. 农业资源与环境学报, 2023,40(02):271-279.
    [39] 寇兵, 袁英, 惠坤龙等. 垃圾渗滤液中溶解性有机质与重金属络合机制研究现状及展望[J]. 环境工程技术学报, 2022,12(03):851-860.
    [40] 李旗强, 田江. 湖南省典型红壤理化特性对土壤吸附铅及淋溶特性影响[J]. 湘潭大学学报(自然科学版), 2023,45(05):12-25.
    [41] 陈江军, 刘波, 李智民等. 江汉平原典型场区土壤重金属赋存形态及其影响因素探讨[J]. 资源环境与工程, 2018,32(04):551-556.
    [42] 窦韦强, 安毅, 秦莉等. 土壤pH对镉形态影响的研究进展[J]. 土壤, 2020,52(03):439-444.
    [43] 刘霞, 刘树庆, 唐兆宏. 潮土和潮褐土中重金属形态与土壤酶活性的关系[J]. 土壤学报, 2003(04):581-587.
    [44] Yu H, Li C, Yan J et al. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil[J]. RSC Advances, 2023,13(6):3505-3519.
    [45] Han B, Liu J, Zhu R et al. Clay minerals inhibit the release of Cd(II) during the phase transformation of Cd(II)-ferrihydrite coprecipitates[J]. Journal of Hazardous Materials, 2024,462:132723.
    [46] 王一志, 曹雪莹, 谭长银等. 不同土壤pH对红壤稻田镉形态及水稻镉积累的影响[J]. 湖南师范大学自然科学学报, 2017,40(01):10-16.
    [47] 刘强, 穆兴民, 高鹏等. 土壤水力侵蚀对土壤质量理化指标影响的研究综述[J]. 水土保持研究, 2020,27(06):386-392.
    [48] 杨秀敏, 任广萌, 李立新等. 土壤pH值对重金属形态的影响及其相关性研究[J]. 中国矿业, 2017,26(06):79-83.
    [49] Caporale A G, Violante A. Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments[J]. Current Pollution Reports, 2016,2(1):15-27.
    [50] 王洋, 刘景双, 王金达等. 土壤pH值对冻融黑土重金属Cd赋存形态的影响[J]. 农业环境科学学报, 2008,27(2):574-578.
    [51] 窦韦强, 安毅, 秦莉等. 土壤pH对汞迁移转化的影响研究进展[J]. 农业资源与环境学报, 2019,36(01):1-8.
    [52] 曹勤英, 黄志宏. 污染土壤重金属形态分析及其影响因素研究进展[J]. 生态科学, 2017,36(06):222-232.
    [53] 王文艳, 张丽萍, 刘俏. 黄土高原小流域土壤阳离子交换量分布特征及影响因子[J]. 水土保持学报, 2012,26(05):123-127.
    [54] 钟晓兰, 周生路, 黄明丽等. 土壤重金属的形态分布特征及其影响因素[J]. 生态环境学报, 2009,18(04):1266-1273.
    [55] 胡青青, 沈强, 陈飞等. 重构土壤垂直剖面重金属Cd赋存形态及影响因素[J]. 环境科学, 2020,41(06):2878-2888.
    [56] 邓迎璇, 李永涛, 李晓晶等. 土壤样品中重金属化学形态模型的发展与应用[J]. 农业环境科学学报, 2018,37(07):1350-1361.
    [57] Y Y. Research Progress in the Effect of Physical and Chemical Properties on Heavy Metal Bioavailability in Soil-Crop System[J]. Advances in Geosciences, 2014,04(04):214-223.
    [58] 李冰, 王昌全, 代天飞等. 水稻子实对不同形态重金属的累积差异及其影响因素分析[J]. 植物营养与肥料学报, 2007,13(04):602-610.
    [59] 郭鹏然, 段太成, 刘欣丽等. 粘粒和阳离子交换量对土壤中钍形态分布的影响[J]. 环境化学, 2009,28(01):76-79.
    [60] 蔡奎, 张蒨, 吴云霞等. 河北平原农田土壤重金属形态分布特征及控制因素研究[J]. 生态毒理学报, 2017,12(02):155-168.
    [61] Zhao M, Zhang S, Han H et al. Heavy metals in sediments of Yellow Sea and East China Sea: Chemical speciation, distribution, influence factor, and contamination[J]. Journal of Oceanology and Limnology, 2021,39(4):1277-1292.
    [62] Rao Z, Huang D, Zhu H et al. Effect of rice straw mulching on migration and transportation of Cd, Cu, Zn, and Ni in surface runoff under simulated rainfall[J]. J Soils Sediments 16, 2016,16(8):2021-2029.
    [63] Hao X, Ouyang W, Gu X et al. Accelerated export and transportation of heavy metals in watersheds under high geological backgrounds[J]. Journal of Hazardous Materials, 2024,465(3):133514.
    [64] 杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002(01):8-15.
    [65] Obarska-Pempkowiak H. Retention of selected heavy metals: Cd, Cu, Pb in a hybrid wetland system[J]. Water Science and Technology, 2001,44(11-12):463-468.
    [66] 常春英, 曹浩轩, 陶亮等. 固化/稳定化修复后土壤重金属稳定性及再活化研究进展[J]. 土壤, 2021,53(04):682-691.
    [67] Zheng S, Zhang M. Effect of moisture regime on the redistribution of heavy metals in paddy soil[J]. Journal of Environmental Sciences, 2011,23(03):434-443.
    [68] 康得军, 张芳, 吕茳芏等. 浸泡淋滤作用下煤矸石重金属元素的释放规律及特征研究[J]. 环境科学研究, 2023,36(01):54-62.
    [69] Wang X, Cammeraat E L H, Cerli C et al. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition[J]. Soil Biology and Biochemistry, 2014,72:55-65.
    [70] 肖海兵, 李忠武, 聂小东等. 南方红壤丘陵区土壤侵蚀-沉积作用对土壤酶活性的影响[J]. 土壤学报, 2016,53(4):881-890.
    [71] 张发民, 杜兰兰, 袁瀛等. 土壤侵蚀和沉积对土壤理化性状的影响[J]. 水土保持学报, 2021,35(06):161-167.
    [72] 邓林, 李柱, 吴龙华等. 水分及干燥过程对土壤重金属有效性的影响[J]. 土壤, 2014,46(6):1045-1051.
    [73] 李翊君. 不同水分管理对水稻重金属含量的影响[D]. 湖南 长沙:湖南农业大学, 2017.
    [74] 毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018,31(10):1669-1676.
    [75] Nethaji S, Kalaivanan R, Arya Viswam et al. Geochemical assessment of heavy metals pollution in surface sediments of Vellar and Coleroon estuaries, southeast coast of India[J]. Marine Pollution Bulletin, 2017,115(1):469-479.
    [76] 唐罗忠, 生原喜久雄, 户田浩人等. 湿地林土壤的Fe2+,Eh及pH值的变化[J]. 生态学报, 2005,25(01):103-107.
    [77] Xu X, Chen C, Wang P et al. Control of arsenic mobilization in paddy soils by manganese and iron oxides[J]. Environmental Pollution, 2017,231(01):37-47.
    [78] Fu L, Hu J, Huang X et al. Vertical Profile of Acid Volatile Sulfide (AVS) and Risk Assessment of Sediments from Baihua Lake, China[J]. Environmental Forensics, 2014,15(4):337-351.
    [79] Xue S, Jian H, Yang F et al. Impact of water-sediment regulation on the concentration and transport of dissolved heavy metals in the middle and lower reaches of the Yellow River[J]. Science of The Total Environment, 2022,806(01):150535.
    [80] 薛天翼, 王红亚. 湖泊(水库)沉积物分析在土壤侵蚀研究中的运用[J]. 地理科学进展, 2018,37(07):890-900.
    [81] 吴金浩, 刘桂英, 王年斌等. 辽东湾北部海域表层沉积物氧化还原电位及其主要影响因素[J]. 沉积学报, 2012,30(02):333-339.
    [82] Rodrigues M L K, Formoso M L L. Geochemical Distribution of Selected Heavy Metals in Stream Sediments Affected by Tannery Activities[J]. Water Air Soil Pollut 169, 2006,169(1):167-184.
    [83] 李柏良, 纪书华, 于童等. 不同氧化还原条件下土壤中Cd/Zn/Cu共运移特征及数值模拟[J]. 中国环境科学, 2022,42(08):3841-3848.
    [84] Miao S, DeLaune R D, Jugsujinda A. Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake[J]. Science of The Total Environment, 2006,371(1):334-343.
    [85] 陶权, 姚景, 何树福等. 不同降雨强度下污染土重金属元素随径流迁移转化特征[J]. 水土保持学报, 2015,29(02):65-68.
    [86] Yang Y, Feng W, Bao L et al. Effects of sewage sludge application methods on the transport of heavy metals with runoff and their mechanisms[J]. Science of The Total Environment, 2024,912:168909.
    [87] 石璞, Yang Chiahue Doua, 赵鹏志. 间歇性降雨对土壤团聚体粒级及磷、铜、锌富集的影响[J]. 土壤学报, 2021,58(04):948-956.
    [88] 张瑞, 苟晓敏, 赵玉珍等. 东北黑土区土壤侵蚀对土壤持水性的影响[J]. 水土保持学报, 2015,29(01):62-65.
    [89] Ajmone-Marsan F, Biasioli M, Kralj T et al. Metals in particle-size fractions of the soils of five European cities[J]. Environmental Pollution, 2008,152(1):73-81.
    [90] Xiao R, Zhang M, Yao X et al. Heavy metal distribution in different soil aggregate size classes from restored brackish marsh, oil exploitation zone, and tidal mud flat of the Yellow River Delta[J]. Journal of Soils and Sediments, 2016,16(3):821-830.
    [91] 王凯, 凌其聪. 武汉市城市土壤重金属粒径分布特征[J]. 环境化学, 2013,32(12):2329-2335.
    [92] 吴克宁, 赵瑞. 土壤质地分类及其在我国应用探讨[J]. 土壤学报, 2019,56(01):227-241.
    [93] Lee B D, Carter B J, Basta N T et al. Factors Influencing Heavy Metal Distribution in Six Oklahoma Benchmark Soils[J]. Soil Science Society of America Journal, 1997,61(1):218-223.
    [94] Covelo E F, Matías J M, Vega F A et al. A tree regression analysis of factors determining the sorption and retention of heavy metals by soil[J]. Geoderma, 2008,147(1):75-85.
    [95] 余小芬, 陈军, 彭荣珍等. 滇中农用地土壤重金属影响因素研究[J]. 西南农业学报, 2012,25(05):1765-1769.
    [96] Zhou W, Han G, Liu M et al. Vertical Distribution and Controlling Factors Exploration of Sc, V, Co, Ni, Mo and Ba in Six Soil Profiles of The Mun River Basin, Northeast Thailand[J]. International Journal of Environmental Research and Public Health, 2020,17(5):1745.
    [97] Zhou W, Han G, Man L et al. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand[J]. PeerJ, 2019,7(7-8):7880.
    [98] Campos D A, Blanché S, Jungkunst H F et al. Distribution, behavior, and erosion of uranium in vineyard soils[J]. Environ Sci Pollut Res 28, 2021,28(38):53181-53192.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:22
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:July 03,2024
  • Revised:August 27,2024
  • Adopted:August 27,2024