Characteristics and drivers of spatial and temporal evolution of ecosystem carbon stocks and habitat quality in Hebei Province
Affiliation:

School of Economics,Hebei University of Geosciences

Clc Number:

X171.1

Fund Project:

Major Research Projects of Humanities and Social Sciences Research of Hebei Provincial Department of Education “Study on the Mechanism and Path of Realizing the Value of Forestry Carbon Sink Ecological Products in Hebei Province”(ZD202311);Research on “Evaluation of Carbon Reduction and Sink Increase Effect of Fine Management of Natural Resources in Hebei Province and Countermeasures for Improvement”, Natural Resources Capital Asset Research Center, Hebei University of Geosciences, Hebei, China (NRACRC2022A02)

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Objective] Carbon stock and habitat quality are important indicators for evaluating the function of ecosystem services, and the study of their spatial and temporal distribution patterns is of great significance for the precise implementation of ecosystem protection and management. [Methods] Based on the land use transfer matrix, we analyzed the land use change status in Hebei Province from 2000 to 2020, and selected the PLUS-InVEST-Geodector model to estimate the ecosystem carbon stock and habitat quality in Hebei Province from 2000 to 2030. And we analyzed the change pattern of its spatial and temporal changes and driving factors. [Result] (1) The carbon stock in Hebei province decreased by 13.45 TgC from 2000 to 2020, and the areas with decreasing carbon stock were mostly concentrated in the Damshang Plateau area, the North China Plain and the southeastern hilly areas. (2) In 2030, the carbon stock under the natural development scenario decreases by 6.37 TgC compared with that in 2020. The carbon stock under the economic development scenario decreases by 21.73 TgC, and the carbon stock under the sustainable development scenario increases by 3.65 TgC. (3) The habitat quality index showed a gradual downward trend over time from 2000 to 2020. The main land categories of lowest and lower grade habitat quality are construction land and cropland, while the main land categories of higher and highest grade habitat quality are grassland and forest land. (4) The habitat quality index of Hebei Province in 2030 varies under different scenarios, with the sustainable development scenario (0.4639) > natural development scenario (0.4542) > economic development scenario (0.4500). (5) The strongest explanatory factors for the spatial variations in carbon stock and habitat quality were slope and elevation. Carbon stock and habitat quality were affected by both natural geographic factors and socioeconomic factors. [Conclusion] The land use pattern under the sustainable development scenario can help to improve the carbon stock and habitat quality of the ecosystem in Hebei Province, and can provide a reference for the relevant departments to formulate land policies and carbon emission reduction policies.

    Reference
    [1] 方精云,于贵瑞,任小波,等. 中国陆地生态系统固碳效应——中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”之生态系统固碳任务群研究进展[J]. 中国科学院院刊, 2015, 30(06): 848-857, 875.
    [2] Hall L S,Krausman P R,Morrison M L. The habitat concept and a plea for standard terminology[J]. Wildlife Society Bulletin, 1997: 173-182.
    [3] Haddad N M,Brudvig L A,Clobert J, et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems[J]. Science Advances, 2015, 1(2): e1500052.
    [4] 王兴玉,张美玲. 基于CENTURY模型的甘南高寒草甸过去50年的碳收支时空分布分析[J]. 生态科学, 2023, 42(02): 211-218.
    [5] 杨利英,张成福,王雨晴,等. CENTURY模型在陆地生态系统的综合应用[J]. 绿色科技, 2019, (16): 9-12.
    [6] Hashimoto S,Ugawa S,Morisada K, et al. Potential carbon stock in Japanese forest soils–simulated impact of forest management and climate change using the CENTURY model[J]. Soil Use and Management, 2012, 28(1): 45-53.
    [7] 彭俊杰,何兴元,陈振举,等. 华北地区油松林生态系统对气候变化和CO_2浓度升高的响应——基于BIOME-BGC模型和树木年轮的模拟[J]. 应用生态学报, 2012, 23(07): 1733-1742.
    [8] You Y,Wang S,Ma Y, et al. Improved modeling of gross primary productivity of Alpine Grasslands on the Tibetan Plateau using the biome-BGC model[J]. Remote Sensing, 2019, 11(11): 1287.
    [9] 王金州,卢昌艾,张金涛,等. RothC模型模拟华北潮土区的土壤有机碳动态[J]. 中国土壤与肥料, 2010, (06): 16-21, 49.
    [10] Coleman K,Jenkinson D S,Crocker G J, et al. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3[J]. Geoderma, 1997, 81(1-2): 29-44.
    [11] 张博. 基于LPJ-GUESS模型对环北极多年冻土区碳循环过程模拟[D]. 兰州交通大学, 2022
    [12] 李长生. 生物地球化学的概念与方法──DNDC模型的发展[J]. 第四纪研究, 2001, (02): 89-99.
    [13] 古圳威,刘京,陈怡,等. 陕西渭北旱塬区生境质量及碳储量时空演变分析与模拟[J]. 环境科学, 2023, 44(08): 4666-4678.
    [14] 金龙如,孙克萍,贺红士,等. 生境适宜度指数模型研究进展[J]. 生态学杂志, 2008: 841-846.
    [15] Wang Y,Fu B T,Lyu Y P, et al. Assessment of the social values of ecosystem services based on SolVES model: A case study of Wusong Paotaiwan Wetland Forest Park, Shanghai, China.[J]. Ying Yong Sheng Tai Xue Bao= the Journal of Applied Ecology, 2016, 27(6): 1767-1774.
    [16] 张亚丽,苏子浩,王妮,等. 基于RSEI和MSPA模型的生境质量时空动态演变分析——以安徽金寨霍山两县为例[J]. 西北林学院学报, 2024, 39(02): 123-132.
    [17] Guan D,Zhao Z,Tan J. Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: a case study in three gorges reservoir area of Chongqing, China[J]. Environmental Science and Pollution Research, 2019, 26(20): 20669-20688.
    [18] Liu X,Liang X,Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168: 94-116.
    [19] 张凯琪,陈建军,侯建坤,等. 耦合InVEST与GeoSOS-FLUS模型的桂林市碳储量可持续发展研究[J]. 中国环境科学, 2022, 42(06): 2799-2809.
    [20] Liang Y,Hashimoto S,Liu L. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050[J]. Ecological Indicators, 2021, 120: 106939.
    [21] 武爱彬,赵艳霞,郭小平,等. 碳中和目标下河北省土地利用碳排放格局演变与多情景模拟[J]. 农业工程学报, 2023, 39(14): 261-270, 293.
    [22] Dai L,Che T,Wang J, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sensing of Environment, 2012, 127: 14-29.
    [23] 李瑾璞,夏少霞,于秀波,等. 基于InVEST模型的河北省陆地生态系统碳储量研究[J]. 生态与农村环境学报, 2020, 36(07): 854-861.
    [24] 张鹏,李良涛,苏玉姣,等. 基于PLUS和InVEST模型的邯郸市碳储量空间分布特征研究[J]. 水土保持通报, 2023, 43(03): 338-348.
    [25] 巩晟萱,张玉虎,李宇航. 基于PLUS-InVEST模型的京津冀碳储量变化及预测[J]. 干旱区资源与环境, 2023, 37(06): 20-28.
    [26] 彭云妮,桑会勇,翟亮,等. 基于InVEST模型的京津冀土地利用变化及碳储量时空分异研究[J]. 测绘通报, 2024, (01): 19-24, 31.
    [27] 苏敬,芮菡艺,朱沁园,等. 基于InVEST模型的1985—2020年忻州市生境质量演变及地形效应[J]. 生态与农村环境学报, 2023, 39(12): 1525-1533.
    [28] 赵晓雨,王益明,何旭,等. 基于InVEST模型的无锡市生境质量变化研究[J]. 南京林业大学学报(自然科学版), 2024: 1-9.
    [29] 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(01): 116-134.
    [30] Shi T,Hu Z,Shi Z, et al. Geo-detection of factors controlling spatial patterns of heavy metals in urban topsoil using multi-source data[J]. Science of the Total Environment, 2018, 643: 451-459.
    [31] 傅楷翔,贾国栋,余新晓,等. 耦合PLUS-InVEST-Geodector模型的新疆地区碳储量时空变化及驱动机制分析[J]. 环境科学: 1-19.
    [32] 贾纪昂,郭伟玲,徐刘洋,等. 耦合PLUS-InVEST-GeoDectetor模型的安徽省碳储量时空演变及驱动力分析[J]. 环境科学, 2024: 1-17.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:25
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:July 28,2024
  • Revised:September 08,2024
  • Adopted:September 09,2024