The Spatiotemporal Patterns of Water Yield Capacity and Differences in Driving Forces of the First Batch of National Parks
Fund Project:

Key Cultivation Project of University Research Innovation Platform of Gansu Provincial Department of Education, No. 2024CXPT-07; Key Laboratory of Grassland Ecosystem of Ministry of Education .NO.KLGE-2024-06

  • Article
  • | |
  • Metrics
  • |
  • Reference [41]
  • | | | |
  • Comments
    Abstract:

    [Objective] Through the comparative analysis of water yielding capacity of the first five national parks in China, to explore the key driving force of each park, and to provide scientific basis for optimizing the ecological protection and water resource management of national parks. [Methods] Based on the InVEST model, we assessed the water yielding capacity of each national park from 2000 to 2023, combined with the coefficient of variation to analyze the stability of the water yielding capacity, and used the Partial Least Squares Path Model (PLS-PM) to quantitatively explore the functioning mechanism of the key driving force of each park. [Results] 1) From 2000 to 2023, the depth of water yield in the first national parks generally showed a fluctuating upward trend (except Hainan Tropical Rainforest National Park). Among them, Wuyishan National Park has the largest depth of water yield (1609.13 mm) and the largest increase (k=9.34), while Sanjiangyuan National Park has the smaller depth of water yield (133.89 mm) and the most moderate increase (k=0.95). 2) The stability of the water yield of each park is as follows: Sanjiangyuan National Park > Hainan Tropical Rainforest National Park > Giant Panda National Park > Wuyishan National Park > Northeastern Tiger and Leopard National Park. Park > Northeast Tiger and Leopard National Park. 3) The key driving forces of different parks differed significantly, showing different patterns of influence. Precipitation is the main positive factor affecting water yield, and it is significantly higher in Sanjiangyuan (0.9879) and Hainan Tropical Rainforest National Park (0.8328) than in the other parks; potential evapotranspiration is generally negatively correlated with the depth of water yield, which is particularly significant in the Giant Panda (-0.4581) and Wuyishan National Park (-0.3485); and the impacts of vegetation cover and topography differ in different national parks. varied among different national parks. [Conclusions] The spatial and temporal patterns of water yield capacity in the first five national parks in China from 2000 to 2023 are obvious and stable, and their key driving forces are different and spatially heterogeneous.

    Reference
    [1] 欧阳志云,唐小平,杜傲,等.科学建设国家公园:进展、挑战与机遇[J].国家公园(中英文),2023,1(02):67-74.
    [2] 张晶晶,徐基良.中国国家公园助力生物多样性保护路径研究进展[J].科技导报,2024,42(18):20-27.
    [3] 陶洁怡,章锦河,郭丽佳,等.三江源国家公园水源涵养服务时空演变特征及其驱动因素[J].生态学报,2025,45(03):1226-1238.
    [4] 吕铖,吕素冰,焦天一,等.河南省黄河流域水资源-经济社会-生态环境协调发展评价及驱动因素分析[J].中国农村水利水电,2024,(12):1-11.
    [5] 杨尧,朱永明.我国正式设立首批国家公园[J].生态经济,2021,37(12):9-12.
    [6] 何思源.中国国家公园治理中的社区角色及其巩固与发展[J].自然资源学报,2024,39(10):2310-2334.
    [7] 常建波,朱博文,闫宝伟.黄河流域产水量时空变化及归因分析[J].环境科学与技术,2024,47(08):113-122.
    [8] 郭佳晖,刘晓煌,张文博,等.基于InVEST模型和PLUS模型的云贵高原产水量时空变化特征分析[J].现代地质,2024,38(03):624-635.
    [9] 戴尔阜,路荣荣.2000—2020年青藏高原产水服务时空分布格局及影响因素[J].西北师范大学学报(自然科学版),2024,60(04):1-11.
    [10] 陈武迪,刘晓煌,李洪宇,等.基于InVEST模型的新疆1990—2018年产水服务时空变化及驱动因素分析[J].现代地质,2024,38(03):636-647.
    [11] 王懋源,齐实,郭衍瑞,等.藏东-川西生态维护水源涵养区产水量驱动机制[J].生态学报,2024,44(21):9520-9534.
    [12] 苏军德,赵晓冏,李国霞.基于InVEST-FLUS模型的祁连山国家公园碳储量演化分析及预测[J].环境工程,2024,42(07):190-199.
    [13] 姚小兰.海南热带雨林国家公园高速公路穿越段的生态风险与对策研究[D].海南大学,2023.
    [14] 徐亚莉,田苗,郑纪波,等.大熊猫国家公园(四川片区)森林的水源涵养功能[J].水土保持通报,2024,44(06):88-96.
    [15] 龙海潇,袁磊.三江源生态系统服务时空演化特征及其驱动因素分析[J/OL].环境科学,1-16[2025-03-13].https://doi.org/10.13227/j.hjkx.202408118.
    [16] 沈文婕,康宇杰,张晓凡,等.大熊猫国家公园四川片区植被时空变化及其地形分异[J].生态学报,2024,44(20):9081-9093.
    [17] 张丽娜,孙颖娜,胡金辉,等. 寒区森林流域产水量时空变化规律研究———以永翠河流域为例[J]. 人民珠江,2023,44( 6) : 18 - 25.
    [18] Peng Shouzhang, Ding Yongxia, Liu Wenzhao, Li Zhi. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11, 1931–1946.
    [19] Peng, S. (2022). 1-km monthly potential evapotranspiration dataset for China (1901-2023). National Tibetan Plateau / Third Pole Environment Data Center.
    [20] Yang J , Huang X . The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925.
    [21] 戴永久, 上官微. (2019). 中国土壤有机质数据集. 时空三极环境大数据平台.
    [22] Yan, F., Shangguan, W., Zhang, J., and Hu, B.: Depth-to-Bedrock Map of China at a Spatial Resolution of 100 Meters, Scientific Data,7:2,2020.
    [23] Sun J ,Ni C ,Wang M .Analysis of Water Conservation Trends and Drivers in an Alpine Region: A Case Study of the Qilian Mountains[J].Remote Sensing,2023,15(18):4611.
    [24] Jakobowicz E ,Derquenne C .A modified PLS path modeling algorithm handling reflective categorical variables and a new model building strategy[J].Computational Statistics and Data Analysis,2006,51(8):3666-3678.
    [25] 杨楠,宋孝玉,邓建伟,等.基于改进S-W模型的南小河沟流域蒸散发分配及控制机制[J].干旱区研究,2024,41(11):1819-1830.
    [26] 吕乐婷 LÜ Leting,任甜甜 REN Tiantian,孙才志 SUN Caizhi,等.Spatial and temporal changes of water supply and water conservation function in Sanjiangyuan National Park from 1980 to 2016[J].Acta Ecologica Sinica,2020,40(3).:
    [27] 姚秀萍,谢启玉,黄逸飞.中国三江源地区降水研究的进展与展望[J].大气科学学报,2022,45(05):688-699.
    [28] 刘蓓.青海不同地形下蒸发皿蒸发量变化及其影响因子分析[J].干旱区研究,2014,31(03):481-488.
    [29] Li X ,Xu X ,Sonnenborg O T , et al.Effect of ecological restoration on evapotranspiration and water yield in the agro-pastoral ecotone in northern China during 2000–2018[J].Journal of Hydrology,2024,638131531-131531.
    [30] Piouceau J ,Panfili F ,Bois G , et al.Actual evapotranspiration and crop coefficients for five species of three-year-old bamboo plants under a tropical climate[J].Agricultural Water Management,2014,13715-22.
    [31] 钟水新.地形对降水的影响机理及预报方法研究进展[J].高原气象,2020,39(05):1122-1132.
    [32] Jiangpeng C ,Xu L ,Chris H , et al.Global water availability boosted by vegetation-driven changes in atmospheric moisture transport[J].Nature Geoscience,2022,15(12):982-988.
    [33] Xuejian L ,Huaqiang D ,Guomo Z , et al.Spatiotemporal patterns of remotely sensed phenology and their response to climate change and topography in subtropical bamboo forests during 2001-2017: a case study in Zhejiang Province, China[J].GIScience
    [34] 李嘉媛,刘露露,杨斌,等.西双版纳热带季节雨林土壤含水量的时空格局及其与降水的关联[J].生态学杂志,2024,43(11):3341-3349.
    [35] 王晓琪,赵雪雁.人类活动对国家公园生态系统服务的影响——以祁连山国家公园为例[J].自然资源学报,2023,38(04):966-982.
    [36]
    [37]
    [38]
    [39]
    [40]
    [41]
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:10
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:December 04,2024
  • Revised:March 17,2025
  • Adopted:March 18,2025