• Article
  • | |
  • Metrics
  • |
  • Reference [42]
  • | | | |
  • Comments
    Abstract:

    [Objective] Quantifying the proportion and composition of each factor in runoff depth, quantitatively analyzing the contribution rate of underlying surface, climate and industrial and agricultural water use change to runoff change in the source area of the Yellow River, laying a foundation for ecological environment protection and water resources development in the Yellow River basin.[Methods] Based on the distributed hydrothermal coupling model WEP-ISF model, the paper analyzed the monthly mean discharge and the dynamic changes of actual evapotranspiration, soil temperature, soil water content and runoff composition in the source area of the Yellow River in different periods, and analyzed the contribution of each influencing factor to the change of runoff by using multi-factor attribution analysis method. [Results] The results showed that the WEP-ISF model could describe the hydrological process and hydrothermal process of the Yellow River source basin well. The mean absolute percentage error between the simulated soil temperature and the interpreted soil temperature was 69.78%~171.55%, and the Nash efficiency coefficient was more than 0.70. The mean absolute percentage error between simulated and interpreted values of soil surface water content is between 13.94% and 20.97%, and the Nash efficiency coefficient exceeds 0.5. Specifically, the Nash efficiency coefficient for the simulated and measured monthly average flow is 0.80, and the mean absolute percentage error is 25.85%.The Nash efficiency coefficient and the mean absolute percentage error of the simulated evapotranspiration value and the interpreted remote sensing value were 0.80 and 53.39%, respectively. The annual average of glacier, snowmelt and fall-off water flow is 0.9mm, 14.9mm and 70.5mm, accounting for 1.0%, 17.3% and 81.7% of the source runoff depth of the Yellow River, respectively. Compared with the baseline period of 1970-1990, the annual average runoff of Tangnahai decreased by 6.675 billion m3 during 1991-2021, the changes of glacier, snowmelt and water flow were 1.48mm, -3.8mm and -13.2mm, which accounted for 9.53%, -24.48% and -85.05% of the changes of runoff depth in the source area of the Yellow River, respectively.And the contribution rates of climate, underlying surface and socio-economic water use change were 96.46%, 2.49% and 1.05%, respectively. [Conclusion] Among the many factors affecting the runoff change in the source area of the Yellow River, the climate factor is the main driving factor leading to the runoff attenuation in the source area of the Yellow River, which is manifested in the trend of increasing glacier melt water flow and decreasing trend of snowmelt runoff and runoff.

    Reference
    [1] Yiran Z ,Degang Z ,Xiaofeng G .Regional climate response to global warming in the source region of the Yellow River and its impact on runoff[J].Science China Earth Sciences,2024,67(3):843-855.
    [2] 刘虎,王磊.第三极地区冰川径流研究进展[J].冰川冻土,2022,44(03):737-752. (LIU Hu,WANG Lei. A review of glacier runoff studies in the Third Pole region [J]. Journal of Glaciology and Geocryology,2022,44(3):737-752. (in Chinese))
    [3] Si J ,Li J ,Lu S , et al.Effects of Climate Change on Surface Runoff and Soil Moisture in the Source Region of the Yellow River[J].Water,2023,15(11):
    [4] 余忠全,杨雪,王盼,等.耦合不同融雪方法的黄河源区径流模拟与评估[J/OL].西安理工大学学报,1-8[2024-12-14].http://kns.cnki.net/kcms/detail/61.1294.n.20240329.1717.010.html. YU Zhongquan,YANG Xue,WANG Pan, et al. Evaluation of snow simulation methods on hydrologic simulation in the Yellow River''s source region[J/OL]. Journal of Xi''an University of Technology,1-8[2024-12-14].http://kns.cnki.net/kcms/detail/61.1294.n.20240329.1717.010.html.
    [5] 陈利群,刘昌明,郝芳华,等.黄河源区气候对径流的影响分析[J].地学前缘,2006(05):321-329.(CHEN Li-qun,LIU Chang-ming,HAO Fang-hua,et al.Impact of climate on runoff in the source regions of the Yellow river [J]. Earth Science Frontiers,2006,13(5) :321-329. (in Chinese))
    [6] 马明卫,王召航,王文川,等.基于Budyko假设的黄河源区径流演变与量化归因分析[J].华北水利水电大学学报(自然科学版),2023,44(03):53-60.DOI:10.19760/j.ncwu.zk.2023033.MA Mingwei, WANG Zhaohang, WANG Wenchuan, et al. Analysis of runoff evolution and quantitative attribution in the sourcearea of the Yellow River based on Budyko hypothesis [J]. Journal of North China university of water resources and electric power (natural science edition), 2019, 44 (3) : 53-60.
    [7] 王灵军.黄河源区唐乃亥以上 流 域 不 同 区 间 径 流 差 异 及 原 因 分 析 [J].青 海 师 范 大 学 学 报 (自 然 科 学 版 ),2024,40(3):99-104,112.[WANG L J.Difference and causes of runoff in different sections above Tangnaihai in the source region of the Yellow River[J].Journal of Qinghai Normal University(Natural Science Edition),2024,40(3):99-104,112.]DOI:10.16229/j.cnki.issn1001-7542.2024313
    [8] 李霞,周祖昊,刘佳嘉,等.基于WEP-QTP模型的近65 a黄河源区径流演变分析[J].人民黄河,2024,46(02):41-48.LI Xia,ZHOU Zuhao,LIU Jiajia,et al.Analysis of Runoff Evolution in the Source Region of the Yellow River in the Past65 Years Based on the WEP-QTP Model[J]. Yellow River,2024,46(02):41-48.
    [9] 周祖昊,刘佳嘉,严子奇,等.黄河流域天然河川径流量演变归因分析[J].水科学进展,2022,33(01):27-37.DOI:10.14042/j.cnki.32.1309.2022.01.003.ZHOU Zuhao,LIU Jiajia,YAN Ziqi,et al. Attribution analysis of the natural runoff evolution in the Yellow River basin[J]. Advances in Water Science,2022,33(01):27-37.DOI:10.14042/j.cnki.32.1309.2022.01.003.
    [10] 庄稼成,星寅聪,李艳忠,等. 基于改进 abcd 模型的黄河源区径流变化与归因[J]. 南水北调与水利科技(中英文),2022,20(5):953-965.ZHUANG J C,XING Y C,LI Y Z,et al. Attribution analysis of runoff change based on the abcd model coupled with the snowmeltmodule in the source region of the Yellow River[J]. South-to-North Water Transfers and Water Science Technology,2022,20(5):953-965.
    [11] 张磊磊,郝振纯,童凯,等.VIC模型在三江源地区产汇流模拟中的应用[J].水电能源科学,2013,31(01):18-20+239. ZHANG Leilei, HAO Zhenchun, TONG Kai1, et al. Application of VIC model to Runoff Simulation of Three-Source Regions[J]. Water Resources and Power,2013,31(01):18-20+239.
    [12] Zheng Y ,Huang Y ,Zhou S , et al.Effect partition of climate and catchment changes on runoff variation at the headwater region of the Yellow River based on the Budyko complementary relationship[J].Science of the Total Environment,2018,6431166-1177.
    [13] Dan Y ,Zhizhu L ,Guangxing J .Using Budyko-Type Equations for Separating the Impacts of Climate and Vegetation Change on Runoff in the Source Area of the Yellow River[J].Water,2020,12(12):3418-3418.
    [14] Wu J ,Zheng H ,Xi Y .SWAT-Based Runoff Simulation and Runoff Responses to Climate Change in the Headwaters of the Yellow River, China[J].Atmosphere,2019,10(9):
    [15] QIN Y,LEI H M,YANG D W,et al.Long-Term Change in the Depth of Seasonally Frozen Ground and Its Ecohydrolog ical Impacts in the Qilian Mountains,Northeastern Tibetan Plateau[J].Journal of Hydrology,2016,542: 204-221
    [16] Yongde Gan, Qingqing Li, Huan liu, et al. 2024, Construction and verification of distributed hydrothermal coupling model in the source area of the Yangtze River. Journal of Hydrology: Regional Studies,56:102057.
    [17] 刘壮添,陈睿智,王未.气候变化和土地利用变化对黄河源区径流变化的累积影响评估[J].人民珠江,2022,43(07):29-35. LIU Zhuangtian, CHEN Ruizhi, WANG Wei. Assessment of Cumulative Impacts of Climate Change and Land Use Change on Runoff Variations in Source Area of Yellow River [J]. Pearl River,2022,43(07):29-35.
    [18] 李永花,代青措,马玉芳,等.基于LSTM和KNN组合模型的黄河源区日径流量模拟研究[J/OL].沙漠与绿洲气象,1-12[2024-12-14].http://kns.cnki.net/kcms/detail/65.1265.P.20241114.1931.030.html. LI Yonghua DAI Qingcuo,MA Yufang, et al. Simulation Studies of Daily Runoff in the Source of the Yellow River Based on the Combined Model of LSTM and KNN [J/OL]. Desert and Oasis Meteorology,1-12[2024-12-14].http://kns.cnki.net/kcms/detail/65.1265.P.20241114.1931.030.html.
    [19] 冉有华, 李新. (2018). 中国冻土分布图(2000). 国家青藏高原数据中心. https://doi.org/10.11888/Geocry.tpdc.270552. https://cstr.cn/18406.11.Geocry.tpdc.270552.Ran, Y., Li, X. (2018). Frozen soil map of China (2000). National Tibetan Plateau / Third Pole Environment Data Center. https://doi.org/10.11888/Geocry.tpdc.270552. https://cstr.cn/18406.11.Geocry.tpdc.270552.
    [20] 中国科学院资源环境科学数据中心(http://www.resdc.cn/). (2019). 中国土地利用数据(1980-2015). 国家青藏高原数据中心.Chinese, A. (2019). Landuse dataset in China (1980-2015). National Tibetan Plateau / Third Pole Environment Data Center.
    [21] 汤国安. (2019). 中国数字高程图(1KM). 国家青藏高原数据中心.Tang, G. (2019). Digital elevation model of China (1KM). National Tibetan Plateau / Third Pole Environment Data Center.
    [22] 张勇,刘时银,王欣.高亚洲冰川区度日因子空间分布数据集[J].中国科学数据(中英文网络版),2019,4(03):141-151.Zhang Yong, Liu Shiyin, Wang Xin.A dataset of spatial distribution of degree-day factors for glaciers in High Mountain Asia [J]. China Scientific Data,2019,4(03):141-151.
    [23] 王东东,贾仰文,牛存稳,岁姚炳,燕翔.基于WEP?L模型的水源涵养不同功能评估方法———以渭河涵养区为例.生态学报,2024,44 (10).Wang D D, Jia Y W, Niu C W, Sui Y B, Yan X.E valuation method for main functions of water retention based on WEP?L model: a case of water retention area in Wei River. Acta Ecologica Sinica, 2019, 44 (10).
    [24] Huimin W ,Yufei J ,X. B H , et al.Study on Interaction between Surface Water and Groundwater in Typical Reach of Xiaoqing River Based on WEP-L Model[J].Water,2023,15(3):492-492.
    [25] 拉尔斯.戈特布,吴申燕.积雪和冰川流域径流模型的扩展与应用[J].新疆地理,1981,(02):61-72.DOI:10.13826/j.cnki.cn65-1103/x.1981.02.008.(Lars Gottb, WU Shenyan. Extension and application of the snow and glacier runoff model [J]. Arid Land Geography,1981,(02):61-72.DOI:10.13826/j.cnki.cn65-1103/x.1981.02.008. (in Chinese))
    [26] Awada H ,Sirca C ,Marras S , et al.Modelling soil moisture and daily actual evapotranspiration: Integrating remote sensing surface energy balance and 1D Richards equation[J].International Journal of Applied Earth Observation and Geoinformation,2024,128103744-.
    [27] 郭琦,刘少锋,袁华,等.基于FLUXNET数据集对陆面模式CoLM能量通量的单点评估[J].气候与环境研究,2022,27(06):688-706. (GUO Qi, LIU Shaofeng, YUAN Hua, et al. Evaluating Energy Fluxes of the Common Land Model Based on FLUXNET Dataset [J]. Climatic and Environmental Research, 2022,27(06):688-706. (in Chinese))
    [28] Wang S ,Yang J ,Wang X , et al.Uncertainty in Determination of the Soil-Water Characteristic Curve Based on the van Genuchten Model[J].Sustainability,2023,15(8):
    [29] Fu C ,Xue J ,Chen J , et al.Evaluating spatial and temporal variations of soil water, heat, and salt under autumn irrigation in the Hetao Irrigation District based on distributed SHAW model[J].Agricultural Water Management,2024,293108707-.
    [30] Lin F ,Chen X ,Yao H .Evaluating the Use of Nash-Sutcliffe Efficiency Coefficient in Goodness-of-Fit Measures for Daily Runoff Simulation with SWAT[J].Journal of Hydrologic Engineering,2017,22(11):
    [31] 张观山,丁小明,何芬,等.基于LSTM-AT的温室空气温度预测模型构建[J].农业工程学报,2024,40(18):194-201. ZHANG Guanshan, DING Xiaoming, HE Fen, et al. Predicting greenhouse air temperature using LSTM-AT[J]. Transactions ofthe Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(18): 194-201.
    [32] Zheng C., Jia L., Hu G. Global Land Surface Evapotranspiration Monitoring by ETMonitor Model Driven by Multi-source Satellite Earth Observations. Journal of Hydrology, 2022, 128444; https://doi.org/10.1016/j.jhydrol.2022.128444.
    [33] Zhou, J., Zhang, X., Tang, W., Ding, L., Ma, J., Zhang, X. (2019). Daily 1-km all-weather land surface temperature dataset for Western China (TRIMS LST-TP; 2000-2022) V2. National Tibetan Plateau / Third Pole Environment Data Center. https://doi.org/10.11888/Meteoro.tpdc.270953. https://cstr.cn/18406.11.Meteoro.tpdc.270953.
    [34] Chai, L., Zhu, Z., Liu, S. (2020). Daily 0.01°×0.01° Land Surface Soil Moisture Dataset of the Qinghai-Tibet Plateau (2005、2010、2015、2017and 2018) (SMHiRes, V1). National Tibetan Plateau / Third Pole Environment Data Center. https://doi.org/10.11888/Soil.tpdc.270947. https://cstr.cn/18406.11.Soil.tpdc.270947.
    [35] LIU Jia-jia,ZHOU Zu-hao,JIA Yang-wen, et al. A new method to quantitatively separate the effects of multi-factors on the water cycle evolution[J]. Journal of Hydraulic Engineering,2014,45(06):658-665.DOI:10.13243/j.cnki.slxb.2014.06.004.刘佳嘉,周祖昊,贾仰文,等.水循环演变中多因素综合影响贡献量分解方法[J].水利学报,2014,45(06):658-665.DOI:10.13243/j.cnki.slxb.2014.06.004.
    [36] 陈龙飞.三江源地区雪冰动态变化及其对流域水文过程的影响[D].中国科学院大学(中国科学院空天信息创新研究院),2022.DOI:10.44231/d.cnki.gktxc.2022.000078.Chen Longfei.Snow and glacier variation and its impact on hydrological processes in the Three-Rivers Headwater region[D].Aerospace Information Research Institute,Chinese Academy of Sciences.
    [37] 姚檀栋,徐柏青,谭德宝,等.气候变化对江河源区水循环的影响[J].青海科技,2022,29(05):4-11+21.Yao Tandong,Xu Baiqing,Tan Debao,et al.Effects of Climate Change on Water Cycle in the Source Region of the Yangtze and Yellow Rivers[J]. Qinghai Science and Technology,2022,29(05):4-11+21.
    [38] 谢昌卫,丁永建,刘时银,等.长江-黄河源寒区径流时空变化特征对比[J].冰川冻土,2003,(04):414-422. XIE Chang-wei, DING Yong-jian, LIU Sh-i yin,et al.Comparison Analysis of Runoff Change in the Source Regions of the Yangtze and Yellow Rivers[J]. Journal of Glaciology and Geocryology,2003,(04):414-422.
    [39] 曹振江,姬广兴,杨瑞婷,等.黄河源实际蒸发和径流变化多时间尺度归因分析[J].水土保持研究,2025,32(1):209-217.Cao Zhenjiang,Ji Guangxing,Yang Ruiting,et al.Multi-temporal scale attribution analysis of actual evapotranspiration and runoff changes in the source area of the Yellow River[J].Research of Soil and Water Conservation,2025,32(1):209-217.
    [40] 李芳.黄河上游水源涵养区径流变化及其影响因素研究[D].兰州大学,2022.DOI:10.27204/d.cnki.glzhu.2022.000762.Li Fang.Study on the Runoff Changes and Influencing Factors in the Water Conservation Area of the Upper Reaches of Yellow River Basin[D]. Lanzhou University,2022.DOI:10.27204/d.cnki.glzhu.2022.000762.
    [41] 王召航.气候变化背景下黄河源区径流演变与模拟预估[D].华北水利水电大学,2023.DOI:10.27144/d.cnki.ghbsc.2023.000605.Wang Zhanhang.Runoff variation and simulation in the source region of the Yellow River under climate change[D]. North China University of Water Resources and Electric Power,2023.DOI:10.27144/d.cnki.ghbsc.2023.000605.
    [42] 陈利群,刘昌明.黄河源区气候和土地覆被变化对径流的影响[J].中国环境科学,2007,(04):559-565.CHEN Li-qun, LIU Chang-ming.Influence of climate and land-cover change on runoff of the source regions of Yellow River[J]. China Environmental Science,2007,(04):559-565.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 03,2025
  • Revised:March 23,2025
  • Adopted:March 24,2025